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Dedication

In early 2007, Lara Kellogg and I (McKenzie) drafted an outline for what would
become this book. Theretofore, she had completed a graduate degree with me and
worked as a geospatial analyst. She had never done anything remotely akin to
editing a technical book, but took the task with a balance of humility and confidence
to which many of us aspire.

Lara was most at home in a vertical landscape of sky, rock, and ice whose
remoteness and intensity most of us visit only in our dreams. Unlike many others of
her persuasion, however, she was equally agile in the virtual landscape of points,
pixels, and polygons. Having barely begun what surely would have been a creative
and productive career as a landscape ecologist, her work on the spatial correlation
structure of fire-history records set a standard for much future work in the field.

In April 2007 we lost Lara to the mountains she loved most, in the Alaska
wilderness. She was orders of magnitude larger than life, and we thank her for the
inspiration she provides us, in both our work and our daily lives, as we see this book
to completion.







Foreword

In the mid 1980s I was asked to create a fire regime map of the Selway-Bitterroot
Wilderness Area for the Bitterroot National Forest fire management staff. The well
known fire historian Steve Barrett had already completed most of the work by syn-
thesizing all available fire history results by forest habitat type, so I figured it would
be easy to create a map of habitat types and then assign fire regimes to each habitat
type. However, when the mapped fire regimes were compared to actual fire history
field data, I found that the map’s accuracy was disturbingly low, ranging from 40%
to 60%. At first I thought that low accuracies were a result of inaccurate habitat type
mapping, but subsequent revisions of the habitat type map that increased accuracies
to over 80% did nothing to improve the accuracy of the fire regime map. I searched
and searched for answers to this dilemma but in the end, I gave up and sent the map
to the Bitterroot National Forest with a warning about its low accuracy. It wasn’t
until years later after reading Forman and Godron’s Landscape Ecology book that
I fully understood the profound influence of spatial and temporal context on fire
regimes. It was clear that fire regimes are the manifestation of spatial factors, such
as topography, wind, and patch characteristics, as they interact with antecedent
climate, fuels, vegetation and humans across the landscape, and fire regimes would
be difficult, if not impossible, to understand, let alone predict, without a spatiotem-
poral foundation.

Landscape ecology is the “glue” that holds ecosystem theory together and
nowhere is that more evident than in the study of wildland fire ecology. Fire is one
of those unique and complex processes that operates across multiple scales of space
and time because its ignition and spread are dictated by diverse factors of climate,
weather, fuels, and topography, which also operate at different scales. It wasn’t until
the field of landscape ecology burst onto the ecological scene in the early 1980s that
the missing pieces of wildland fire dynamics fell easily into place. The concepts of
scale, resolution, and extent fit perfectly into fire science and they helped explain
new and exciting phenomena that would have never been discovered without
a context of space. In my experience, it is only in the framework of landscape ecol-
ogy that the many varied aspects of fire regimes can be explored and explained
using the extensive body of fire history data collected by the many dedicated scientists.
Moreover, as I learned in the Bitterroot project, it is difficult to map fire regimes

vii



viii Foreword

across a landscape without a basic knowledge of landscape ecology fundamentals,
and the identification of the appropriate scale, landscape extent, time frame, and
spatial variability allows a more accurate depiction and prediction of fire regimes
across large areas.

It would be difficult to overemphasize the impact that landscape ecology has had
on wildland fire science, yet there have been few comprehensive summaries or
syntheses of the integration of landscape ecology and wildland fire in the literature.
It is the concepts of landscape ecology that make fire science much easier to under-
stand, interpret, and apply. Particularly valuable is a physical or mechanistic
approach to landscape fire ecology, where biophysical drivers such as climate,
energy flux, and plant ecophysiology are used to build a more “unified theory of
the ecology of fire.” Fire processes and their interactions are dynamic and we
should never assume that there is such a thing as an “equilibrium condition”; wild-
land fire ecology exhibits non-linear behavior that in turn produces non-equilibrium
responses, which is important to consider when attempting to apply fire science to
management issues.

I believe that the next major advances in the field of wildland fire science will
be in two areas: (1) the study of the variability of fire across spatiotemporal scales,
and (2) the linkage of fire regimes with the biophysical processes that control them.
Scaling laws, self-organized criticality, and power laws, along with semi-variance
and geostatistical analyses, represent exciting new advances in understanding fire’s
spatial and temporal variability. But we must first understand the multi-scaled basic
physical processes that influence fire dynamics if we are to understand wildland fire
and manage its effects. This is more important than ever as we are faced with rapid
and uncertain changes in climate, the coarsest and arguably most powerful driver
of fire regimes.

In the end, the complexity of landscape fire dynamics must eventually be syn-
thesized to a level where it can be understood and applied by natural resource
management. Fire history and spatially explicit historical fire regimes are now
being used by many managers to quantify the historical range and variability of
landscape characteristics, and this envelope of variability is then used to prioritize,
design, and implement management actions at multiple scales. This book presents
essential information and some useful applications of landscape fire ecology for
natural resource management. I only wish I had this book when I was spending long
days and nights trying to improve that Selway-Bitterroot fire regime map.

March 19, 2010 Robert E. Keane



Preface

This is a book about fire on landscapes. We explore fire as a contagious spatial
process from a number of perspectives, including fundamental theory, fire-climate
interactions, interactions with other ecological processes, and ecosystem manage-
ment. Along the way we visit traditional domains of landscape ecology such as
scaling, pattern-process interactions, and the complex interplay of top-down and
bottom-up controls on ecosystem dynamics. We devote considerable space to theo-
retical considerations, particularly cross-scale modeling and landscape energetics,
which we believe are under-represented in the current literature on landscape ecol-
ogy of fire and other disturbances. In the remainder of the book, we look at fire
climatology in an explicitly spatial context, examine four case studies of fire
dynamics, two topical and two geographic in focus, and discuss issues facing fire
management under rapid global change.

Our geographic focus is western North America (Fig. 1). This not only reflects
the expertise of the editors and authors, but also allows us to look at a single large
and diverse bioregion from multiple perspectives. Moreover, fire regimes in western
North America are relatively less modified by humans than many other fire-prone
landscapes around the world. Western North America is endowed with expanses of
uninhabited areas over which we have ample opportunity to observe fire at a variety
of scales. This facilitates our examining the interactions of climate, vegetation,
and fire; fire extent, severity, and spatial pattern; and fire’s interactions with other
disturbances such as insect outbreaks and with other ecological processes such as
invasions of landscapes by non-native plants.

Fire regimes in western North America, and the western United States in par-
ticular, have evolved in a mostly temperate climate, ranging from maritime to
continental, and from wet to arid. Topography is very diverse, ranging from flat to
extremely rugged, with elevations from below sea level to greater than 4,000 m.
Human-induced changes in the fire regime range from essentially none (subalpine
and other systems with stand-replacing fire regimes) to significant (Native
American burning, twentieth-century fire exclusion, human-facilitated spread of
invasive non-native species). Major vegetation types include semi-arid grasslands,
chaparral, semi-arid woodlands, and a wide range of conifer and mixed forests.
Western North America therefore encompasses many (though not all) of the major

ix



X Preface

Fig. 1 Locations in the western USA of study sites analyzed or referred to in individual chapters
of the book. Chapter numbers are in parentheses. Map color schemes here and elsewhere in the
book draw substantially upon ideas at http://colorbrewer2.org/, developed by C.A. Brewer, Dept.
of Geography, Pennsylvania State University

fire-regime types of Earth’s fire-prone ecosystems, and we believe that the more
general inferences from this book will have wide applicability around the world.

Section I focuses on the concepts of ecosystem energetics, scaling, and resilience.
In Chap. 1, we outline a potential theoretical framework for landscape fire based on
ecosystem energetics. This chapter provides a lens through which succeeding
chapters may be viewed. We explore how the concepts of ecosystem energetics,
top-down vs. bottom-up controls, and scaling laws might be integrated to provide
both a theoretical framework that reduces the apparent complexity of landscape
disturbance and a window into its underlying mechanisms.



Preface xi

McKenzie and Kennedy (Chap. 2) review quantitative scaling relationships in fire
regimes and describe how they can be used to discern controls operating at different
scales. They review the basis for scaling laws in fire-size distributions, fire fre-
quency, and fire hazard. These authors also use scaling laws to illuminate the spatial
autocorrelation structure in fire-history data, which in turn reveals the dominant
drivers of historical fire occurrence and extent.

In Chap. 3, Moritz, Hessburg, and Povak focus on scaling laws that describe fire
size distributions and show how the spatial domain over which these scaling laws
obtain is linked to dominant scales of regulation. They further present ideas about
how self-organized ecosystem dynamics play out at these characteristic “landscape
scales”, possibly building or enhancing landscape resilience.

Section II attends to one of the most important drivers of landscape fire dynamics:
climate. Fire climatology references spatial scales broader than the usual domain of
landscape ecology and is the subject of these two chapters. Gedalof (Chap. 4)
reviews fire climatology with an emphasis on broad spatial patterns of climate drivers
of fire and how they interact with biome-scale vegetation across North America.
He invokes the idea of top-down vs. bottom-up controls on landscape fire, intro-
duced in Chaps. 1-3, as they apply at regional to continental scales.

In Chap. 5, Littell and Gwozdz develop statistical fire-climate models at a finer
spatial scale in the Pacific Northwest, USA. They introduce the idea of seasonal
water-balance deficit as an overarching control of fire extent at regional scales and
present ideas for scaling climate-fire models down to landscapes while maintaining
the water-balance mechanism as a control.

Section III focuses on the ecological consequences of landscape fire dynamics.
In Chap. 6, Smithwick reviews the interactions of fire with the biogeochemistry
of ecosystems, using the well studied Greater Yellowstone Ecosystem as an
example of the lessons learned about biogeochemical resilience. Whereas most
fire-effects research looks at species, populations, and communities, Smithwick
discusses the relatively unexplored idea that ecosystem functions such as decom-
position and nutrient cycling are important contributors to resilience in the face of
disturbance.

Swetnam, Falk, Hessl, and Farris (Chap. 7) provide an overview of methods for
reconstructing historical fire perimeters from fire-scar records (which are essentially
point data) as a tool for understanding the landscape spatial patterns of unmanaged
fire. They review methods of interpolation, comparing both accuracy and assumptions
implicit in a variety of methods. They then give a prospectus of the application of
spatial reconstruction to both contemporary and future fire management.

In Chap. 8, Keeley, Franklin, and D’ Antonio use the large and biologically rich
state of California, USA, as a geographic template for examining the interplay of fire,
climate, invasive species, and human populations. California’s forests, shrublands,
and grasslands, along with other Mediterranean ecosystems, are some of the
world’s most diverse with respect to species composition, landforms, and land use.
Ecosystem dynamics in this region are analogously complex and provide a challeng-
ing arena for understand landscape fire dynamics in the face of extensive invasion
by persistent non-native species.



xii Preface

Cushman, Wasserman, and McGarigal (Chap. 9) examine potential consequences
of landscape fire dynamics for wildlife habitat in a Rocky Mountain landscape in
northern Idaho, USA. They report a simulation experiment on the relative effects
of climate change vs. management alternatives on habitat for two wildlife species
with contrasting life-history traits. Their work poses the very relevant question of
whether even fairly aggressive management can be effective given expected future
changes in climate.

Our focus on the relatively uninhabited lands of western North America in no
way obviates the need to consider the human dimension of the landscape ecology
of fire in a contemporary context. Section IV provides two perspectives on fire
management in the future. In Chap. 10, Peterson, Halofsky, and Johnson discuss
fire management opportunities on landscapes that are moderately to intensively
managed. They present both a technical overview of fire and fuels management,
with implications for ecosystem function in future climate, and a review of adaptation
strategies from a consensus of land managers.

By contrast, Miller, Abatzoglou, Syphard, and Brown (Chap. 11) look at fire
management in areas protected as wilderness across the western United States.
Acknowledging that fire regimes and their management do not exist in isolation
from exogeneous forces of change, they explore how the future context of wil-
derness fire management might change with two future trends: increasing tempera-
tures leading to more episodes of extreme fire weather, and increasing housing
densities leading to greater risk and greater incidence of human-caused fires in
wilderness areas. Using two contrasting examples, they discuss how the chal-
lenge to meet fire-management objectives could intensify in many wilderness
areas.

A single book cannot cover the entire field of landscape fire ecology.
Consequently, we have eschewed coverage of some topics that might be central to
a broad survey of the field but have been well covered in other recent publications.
For example, we do not review landscape fire simulation models or remote sensing
of fire characteristics. Similarly, we do not provide surveys of the use of landscape
metrics in the description of fire pattern and dynamics, or of spatial considerations
in sampling designs in fire ecology. Instead, we focus on new and emerging ideas
about the landscape ecology of fire that are not well covered in the existing litera-
ture. We hope that the chapters in this book stretch familiar concepts, touch upon
new ideas and directions, and present a range of perspectives for the study of
landscape fire ecology. We encourage the reader to use this volume as a comple-
ment to existing published work.

Seattle, WA Donald McKenzie
Missoula, MT Carol Miller
Tuscon, AZ Donald A. Falk
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Part I
Concepts and Theory






Chapter 1
Toward a Theory of Landscape Fire

Donald McKenzie, Carol Miller, and Donald A. Falk

1.1 Introduction

Landscape ecology is the study of relationships between spatial pattern and ecological
process (Turner 1989; Turner et al. 2001). It is the subfield of ecology that requires
an explicit spatial context, in contrast to ecosystem, community, or population ecology
(Allen and Hoekstra 1992). One major theme in landscape ecology is how natural
disturbances both create and respond to landscape pattern (Watt 1947; Pickett and
White 1985; Turner and Romme 1994). Landscape disturbance has been defined ad
nauseum, but here we focus on its punctuated nature, in that the rates of disturbance
propagation are not always coupled with those of other ecological processes that
operate more continuously in space and time. Disturbance can therefore change
landscape pattern abruptly, and large severe disturbances can be a dominant struc-
turing force on landscapes (Romme et al. 1998).

Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems
(Fig. 1.1). Because fire is fundamentally oxidation of biomass, the capacity to burn
exists virtually wherever vegetation grows. Occurring naturally in almost every
terrestrial biome, fire and its interactions with ecosystems enable the study of
landscape pattern and process under a wide range of climates and geophysical
templates (Bowman et al. 2009).

Fire represents one of the closest couplings in nature of abiotic and biotic forces
(Chap. 6). Fires are frequent, severe, and widespread enough in multiple regions and
ecosystems to have served as a selective evolutionary force, engendering adaptive
responses across a variety of plant and animal taxa (Bond and Midgley 1995; Hutto
1995; Bond and van Wilgen 1996; Schwilk 2003). Conveniently, the combustion
process itself does not undergo evolutionary change. In that way it is unlike insects

D. McKenzie (0<))

Pacific Wildland Fire Sciences Laboratory, U.S. Forest Service,
400 N 34th St., Ste. 201, Seattle, WA 98103-8600, USA
e-mail: dmck @u.washington.edu

D. McKenzie et al. (eds.), The Landscape Ecology of Fire, Ecological Studies 213, 3
DOI 10.1007/978-94-007-0301-8_1, © Springer Science+Business Media B.V. 2011



4 D. McKenzie et al.

Fig. 1.1 Global compilation of MODIS fire detections between 19 and 28 June 2004 (Image
courtesy of MODIS Rapid Response System http://rapidfire.sci.gsfc.nasa.gov/tfiremaps/)

responsible for outbreaks, which evolve (and co-evolve) with host species over
millennia (Royama 1984; Logan and Powell 2001). Fire as a physical and chemical
process is fundamentally the same today that it was millions of years ago, and argu-
ably will be the same a million years from now, although its behavior and effects on
landscapes change with the development of ecosystems and vegetation.

Starting from simple triggers (lightning, striking a match), fire on landscapes
develops into a complex spatio-temporal process both driven and regulated by
abiotic and biotic factors (Johnson 1992; Johnson and Miyanishi 2001; van
Wagtendonk 2006). Fire behavior and fire effects reflect the relative strengths of
multiple drivers, interacting at variable scales of space and time (Table 1.1). At
fine scales (10~'-10"' m?), fire spread and intensity are conditioned by properties of
fuel (mass, availability, spatial arrangement, and moisture), ignition (type, inten-
sity, frequency, and spatial distribution), and ambient weather (air temperature,
wind speed, and humidity). As a fire spreads over larger spatial scales (10'-10° m?)
other factors gain in importance, particularly topographic variation (aspect, slope,
and slope position). As a result of these interactions, a fire can cover 5,000 ha or
more in a day, or smolder and creep through ground fuels for months.

The spatial and temporal scales of fire are intuitively observable and compre-
hensible by humans, although reconciling them quantitatively with the spatiotem-
poral domain of “normal” ecosystem processes introduces profound challenges,
chiefly because of the different rates and scales at which processes occur. Fire can
reset landscape processes and their spatial pattern, often across community and
watershed boundaries, thereby forcing managers to take a landscape perspective.
Planning at scales that are too fine will fail to account for disturbances that arise
outside small management units; planning at scales that are too coarse, such as
regional scales, will not account for local patterns of spatial and temporal variability
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Table 1.1 Spatiotemporal properties of fire regimes and drivers of fire behavior and effects.
Drivers act on means, variances, and extremes of properties (Adapted from Falk et al. (2007))

Climate, weather

Vegetation, fuels

Topography, landform

Temporal distribution

Frequency or fire
interval

Duration

Seasonality

Spatial distribution
Extent

Pattern (patch size,
aggregation,
contagion)

Intensity and
severity

Ignition availability
and flammability;
wind, humidity, and
temperature patterns;
fuel moisture

Drought or days without
rain; frontal and
synoptic climatic
dynamics

Seasonal progression
and length of fire
season; effects on
fuel phenology

Local and synoptic
weather control of
ignition and fire
spread

Orographic and frontal
atmospheric
instability, wind
vectors, spatial
distribution of
ignitions

Microclimate and
weather influences
on spatial patterns
of fuel moisture and
abundance

Vegetation
productivity,
postfire recovery
and fuel buildup

Fuel biomass,
condition, size
distribution,
connectivity;

consumption rates

Fuels phenology:
green up, curing,
and leaf fall

Vegetation (fuels)
abundance and
connectivity

Spatial pattern of
landscape fuel
types (fuel
mosaic)

Vegetation (fuel)
mass, density,
life-history traits,
configuration;
vertical and
horizontal
connectivity
of surface and
canopy layers

Interaction of fire
size with fuel
availability;
topographic barriers
to fire spread

Topographic controls on
rate of spread; fire
spread barriers; rain
shadows

Topographic effects on
fuel types, moisture,
and phenology

Topographic influences
on fire spread; fire
compartments

Topographic influences
on fire spread and
spatial distribution
of fuel types and
condition

Slope and aspect
interactions with
local microclimate
and weather

and are in danger of applying one-size-fits-all solutions (Chap. 10). Likewise,
although fires occur as “events” over time spans of days to months, the postfire
ecosystem response can unfold over decades to centuries. Landscape ecology
provides a template for the analysis of both fire behavior and fire effects, and as a
discipline offers the concepts and tools for understanding fire across scales (Turner
et al. 2001; Falk et al. 2007).

A central concern in landscape ecology is the feedback that can exist between
landscape pattern and ecological processes (White 1987; Turner 1989). In the
case of fire, the mechanisms for this pattern-process dynamic are reasonably
well understood at the fine scales for which fire behavior models were built
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(Johnson and Miyanishi 2001; Linn et al. 2006), albeit not always quantified
accurately enough for reliable landscape predictions (Keane and Finney 2003;
Cushman et al. 2007). As fire opens canopies, causes differential mortality, con-
sumes standing biomass, affects watershed hydrology and soils, and prepares
seedbeds, it acts as a powerful agent of landscape pattern formation. At the same
time, however, the spread and behavior of fire depend explicitly on some of those
very same landscape attributes, such as the distribution, type, age, and condition
of vegetation. The spatial and temporal distributions of biomass and moisture
influence the spread of fire, inhibiting the spread of fire where biomass is too
scarce or too wet, and allowing fire to spread only where conditions are favor-
able to combustion. Fire is therefore a contagious disturbance (Peterson 2002),
in that its intensity depends explicitly on interactions with the landscape.

The feedback between fire and landscape pattern is strong and ecosystem-
specific, and provides a perfect illustration in nature of the interaction of pattern
and process. Over time this pattern-process interaction creates landscape memory,
a legacy of past disturbance events and intervening processes (Peterson 2002). This
memory can be spatially sparse, but temporally rich, as with a spatial pattern of
fire-scarred trees (Kellogg et al. 2008), or the converse, as with a landscape pattern
of age classes and structural types (Hessburg and Agee 2005). Landscape memory
extends to the less visible but no less important functional properties of ecosystems,
such as biogeochemical processes (Chap. 6).

Fire effects illustrate this interaction of pattern and process. Fire consumes
biomass as it spreads, producing a patch mosaic of burned areas on the landscape,
whose heterogeneity reflects the combined effects of the spatial patterns of fuels,
topographic variation, and microscale variation in fire weather. Burned areas
produce characteristic patterns of spatial variability in severity and patch sizes. This
tendency is the basis for the widespread use of remote sensing and geographic
information systems (GIS) to quantify and evaluate fire as a patch-generating land-
scape process.

Remotely derived imagery has revolutionized the field of burn severity mapping,
especially by greatly improving the precision and accuracy of characterizations of
postfire environments (MTBS 2009). Both qualitative and quantitative metrics of
burn severity can be derived from satellite imagery based on reflected and emitted
electromagnetic radiation (Miller and Yool 2002; Holden et al. 2005; Key and
Benson 2006). Although most burn severity work to date has used just two spectral
bands from LANDSAT images at 30-m resolution, multi-spectral and panchromatic
data are increasingly available at multiple resolutions as fine as 1 m. Hyperspectral
imaging (Merton 1999) and LiDAR (Lentile et al. 2006) also hold promise for more
refined analysis of the three-dimensional structure of postfire landscapes.

A recently burned landscape is striking to look at. Spatial patterns of burn severity
are often very heterogeneous, even within fires assumed to be stand-replacing
(Fig. 1.2). Indices abound to quantify and interpret landscape spatial pattern
(McGarigal et al. 2002; Peterson 2002), and have been used widely to understand
spatial patterns specifically with respect to fire (Romme 1982; Turner et al. 1994).
Our interest here, however, lies specifically in the processes that both generate and
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are controlled by that spatial pattern. For example, patterns of burn severity and the
spatiotemporal structure of fire-scar records emerge from the cumulative effects of
individual events and their interactions, but how these dynamic interactions play
out over larger spatial and temporal scales is less well understood. A framework is
needed for connecting these events and interactions that is conceptually and com-
putationally feasible at the scales of landscapes. In this chapter we propose a theo-
retical framework that reduces the apparent complexity of ecosystem processes
associated with fire. A full development of this theory would entail a formal struc-
ture for landscape fire dynamics and quantitative models for individual transforma-
tions of its elements (sensu West et al. 2009). Here we are content with suggesting
a way of thinking about landscape fire that “streamlines” its complexity to a level
that is tractable for both research and management.

1.2 An Energetic Framework for Understanding
Landscape Fire

Earth system processes reflect the distribution of energy across scales of space and
time (Pielou 2001). The climate system, for example, is a direct manifestation of
the flows of energy near the Earth’s surface, including the uplift of equatorial air
masses and major convection processes such as Hadley cells and atmospheric
circulation, all of which redistribute incoming solar energy. Ocean circulation is
likewise driven by system energetics, which are evident in three dimensions
between deep and surface waters across thermohaline gradients and major quasi-
periodic ocean-atmosphere couplings (El Nifio Southern Oscillation, Pacific
Decadal Oscillation, Atlantic Multidecadal Oscillation, North Atlantic Oscillation).
Earth’s fluxes of energy drive biogeochemical cycles that connect flows of materi-
als and energy within and among ecosystems. Biogeochemical cycles, such as
those of carbon and nitrogen, link the biotic and abiotic domains and reflect feed-
backs between biological and non-biological components of the Earth system.
Ecosystem ecologist H. T. Odum (1983) observed that biogeochemical cycles can
be considered a form of energy flow at all scales, and that other ecological
processes such as succession and productivity can be viewed as expressions of
organized energetics.

The ecosystem energy perspective offers a general framework for understanding
landscape fire as a biophysical process. Fire redistributes energy, and in doing so,
can dramatically transform landscape pattern. Here we outline a framework for
understanding the landscape ecology of fire from an energetic perspective. In this
energy—regulation—scale (ERS) framework we view fire as an ecosystem process
that can be understood by examining how energy is transformed and redistributed,
subject to regulation, across scales. We seek metrics associated with both energy
and regulation that will be building blocks for a fully quantitative theory. The term
regulation is intended in a broad heuristic sense, and is not intended to imply or be
parallel to any genetic or molecular mechanism.
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Fig. 1.2 (a) Fire-severity classes on the 2006 Tripod Complex Fire in northcentral Washington,
USA. Fire severity classes are identified from LANDSAT imagery using the algorithm of Key and
Benson (2006). (b) Photos demonstrate low-mixed severity as crown scorch (above), and mixed
severity as juxtaposed high- and low-severity patches (below). Fire-severity data are from the
Monitoring Trends in Burn Severity (MTBS) project. http://www.mtbs.gov. Accessed 1 November,
2009 (Photos courtesy of C. Lyons-Tinsley)
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1. Energy. Incoming solar energy is the ultimate basis for plant growth and thus
the fuels involved in combustion. Solar energy is also the basis for atmospheric
circulation and the weather that influences moisture conditions of fuels and fire
behavior. Vertical energy transfer in the atmosphere generates lightning, the
primary non-human source of ignitions. The preconditions for fire are thus
related inextricably to energy sources and fluxes.

2. Regulation. Ecosystems are subject to controls that affect the energy flux rates
important to landscape fire. Forests store energy (fuel) as living and dead bio-
mass aboveground and in soils, and the time it takes to accumulate a storehouse
of biomass that will burn is subject to biotic and abiotic controls on growth and
decomposition that vary across ecosystems (Aber and Melillo 1991). The energy
fluxes associated with the combustion process itself are facilitated or constrained
by atmospheric humidity, temperature, and air-mass movement (weather).
Topography works in a similar fashion with landscapes having regions of low
resistance to fire spread (e.g., steep slope gradients in the direction of wind) or
high resistance (cliffs, lakes, persistent fuel breaks). Indeed all three elements of
the traditional “fire triangle”—fuels, weather, and topography—can be inter-
preted as ecosystem components involved in regulating the flow of energy across
a landscape (Table 1.2).

3. Scale. Flows of energy and mass (stored energy) are concentrated at characteristic
scales of space and time (Holling 1992). For example, the main regulators of com-
bustion at the space and time scales of millimeters and seconds (combustible fuel
mass and moisture, a heat input source, and sufficient oxygen to sustain combustion)
are different from those that regulate fire occurrence at subcontinental and
decadal scales (interannual to decadal variation in winter precipitation, spring
and summer temperature and humidity, prior fire history and regrowth of flam-
mable biomass). Between these two ends of the scaling “gradient”, fire dynamics
play out across landscapes, in ways that are more complex and heterogeneous,
and less tractable to analyze.

Within this “ERS” framework, we can recast the standard pattern-process polar-
ity in landscape ecology (Turner et al. 2001) by examining energy in landscape fire.
Following basic physics, we partition energy into potential and kinetic energy.
Potential energy (PE) is stored mostly in biomass, in the form of molecular bond
energy. Increases in biomass (productivity) are affected by kinetic energy (KE) in
the form of photosynthetically active radiation (PAR), and regulated by levels of
soil and foliar moisture. The potential energy in biomass is transformed rapidly into
kinetic energy during a fire. Heat flux (radiative, convective, conductive) is basic to
the physics of fire spread. The spatial interplay of heat flux with the connectivity of
potential energy in fuels manifests as contagion on the landscape. Rates and direc-
tions of fire spread are determined by the interaction of heat flux, generated by the
transformation of potential energy in fuels and driven by fire weather, with land-
scape pattern (regulation), producing the observed complex spatial patterns of
landscape fire.
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Table 1.2 Some important energetic and regulatory functions of elements of the “fire triangle”
that are particularly relevant to landscape fire. Energy can be in kinetic (KE) or potential (PE)
form. Energy storage and regulation of energy fluxes in landscape fire involve myriad ecosystem

components

Fire triangle component Energy sources and fluxes

Regulation of energy conversion

Solar energy is the primary
KE input, driving
temperature and
precipitation patterns that
provide preconditions for
ignition

KE is distributed to
ecosystems via circulation
(wind, convection, and
turbulence) contributing to
fire spread

Weather and climate

Photosynthetic plants convert
solar energy to PE in the
form of chemical-bond
energy in biomass

PE is stored on the landscape,
measured as living
and dead biomass and
productivity. During
combustion, these energy
pools become sources of
energy (KE) redistributed
to the system

N/A (By themselves they do
not provide nor convert
energy)

Fuels and vegetation

Topography and
landform

Fuel moisture and fuel temperature
affect the rate of PESKE
conversion, regulating ignition
of fuels, fire intensity, and fire
spread

Energy regulation in the climate
system is expressed in
temporal and spatial patterns
of precipitation, temperature,
seasonality, and ocean-atmosphere
teleconnections

Abundance, compactness, and
arrangement of fuels affect
ignition, heat-transfer rates, and
fire spread

Tree density and canopy cover affect
regulation by fuel moisture and
temperature. Rates of postfire
plant growth and decomposition
influence how often fires occur

Slope steepness affects heat-transfer
rates and fire spread

Solar incidence varies with aspect,
affecting fuel moisture and fuel
temperature, and thus the ignition
of fuels, fire intensity, and fire
spread

Shape of terrain and topographic
barriers influence connectivity
and the spatial pattern of fire
spread

Energy fluxes associated with physiological processes of photosynthesis and
respiration, and the ecosystem level processes of growth and decomposition
involved in succession, proceed at very different rates from the energy fluxes asso-
ciated with fire. The heat transfer in fire spread is pulsed, whereas the fluxes in
growth and decomposition are more or less continuous, albeit time-varying. Fire
therefore represents a dramatic and relatively instantaneous transformation of
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potential energy to kinetic energy, in contrast to the slower transformations
associated with stand dynamics, which ultimately convert the kinetic energy from
the sun into potential energy stored as biomass (Fig. 1.3).

Interactions among energy fluxes, and their cumulative effects over time, are
evident in feedbacks to the process of landscape fire. These feedbacks can be nega-
tive, where fire is self-limiting, or positive, where fire is self-reinforcing. Fire as a
landscape process is governed by available biomass, terrain properties that influ-
ence combustion, and meteorological variables that affect ignition, wind speed,
temperature, and humidity. As a fire occurs, it effects a transformation of biomass
(as potential energy) into thermal (kinetic) energy, which is then redistributed
within and beyond the site. This transformation drives fire effects, including redis-
tribution of organic and inorganic compounds (in foliage and soil) and water. The
postfire environment integrates the legacy of the prefire landscape and the energy
transformation from fire behavior to generate a new landscape on which stored
energy has been redistributed. In this way, fire behavior, fire effects, and postfire
ecosystem changes combine to create landscapes with unique self-regulating prop-
erties (Fig. 1.4).

PE=>KE

short

ENERGETIC
PERSPECTIVE

PE 4= KE

long

Prefire - Postfire
Landscape Landscape

Fuels & topo [ Fuels & topo

Fig. 1.3 The familiar landscape fire cycle is shown in black. Elements in boxes are things fire
scientists (fop portion) and landscape ecologists (bottom portion) are accustomed to measuring or
modeling. In red is the energetic perspective. Short pulses of potential to kinetic energy (KE)
occur during a fire, and kinetic energy is transformed into potential energy (PE) over long periods
of time by plants. The spatial pattern of PE is continually being redistributed, subject to regulatory
controls
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a b
SW - NE
=
i ** * * Steep topography, variable fire frequency and severity
* (much of the American western mountains)

Moderate topography, low-severity fire (e.g.,
American Southwest ponderosa pine)

—
/ﬂrger patches, mostly gentle
topography, high-severity fire
(e.g., boreal forest)

Fig. 1.4 Examples of energetic vs. regulatory emphasis in dynamics of self-limiting properties of
landscape fire. (a) In moderate topography, fires may not carry through an entire area depending
on the connectivity of fuels and the characteristic scale of variability in potential energy (correlation
length). (b) The physical template (steep topography) regulates the energetic dynamics by introducing
physical barriers that create resistance to fire spread. In theory, one could have the same correlation
length in these two systems, with different dynamic underpinnings. (¢) In a very different system
subject to top-down controls (climate), correlation length is much larger, reflected in patch-scale
variation in age classes

1.2.1 Self-Limiting Properties of Landscape Fire

The behavior and spread of fire on a landscape depend in part on current conditions
(e.g., today’s weather), and in part on the legacy of past fire events and subsequent
ecosystem processes (e.g., the mosaic of flammable vegetation). By definition, in an
ERS framework each fire—each combustion event—alters the distribution of stored
energy in the form of fuels to create a new postfire environment. In prescribed
surface fires, fire intensity is controlled such that consumption is limited to herba-
ceous and dead woody fuels, whereas canopy consumption can approach 100% of
foliage and even small branches in a high-energy crown fire (Stocks et al. 2004).
How long the legacy of this redistribution of stored energy persists, and the extent to
which the landscape fuel mosaic resembles the pre-fire mosaic, depend on many
factors, including the type of vegetation, fire intensity (heat output per unit time and
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space), fuel conditions (e.g., moisture content) at the time of the fire, and the
productivity of the site, which governs how quickly vegetation can regrow.

Each fire alters the conditions for the next fire in the same location. Fire managers
know well that the intensity and rate of spread often moderate when a fire spreads
into a recently burned area. Indeed, such understanding is the basis for the wide-
spread application of prescribed fire and wildland fire use (Mitchell et al. 2009).
Behavior of wildfires burning under all but the most severe weather conditions
moderates when fuel conditions are altered by thinning or prescribed fire (Agee and
Skinner 2005; Finney et al. 2005; Maleki et al. 2007).

A similar self-limiting dynamic can also be seen in unmanaged landscapes. For
example, in a study in the central Sierra Nevada, Collins et al. (2009) found that
under all but the most extreme conditions, the spread of a fire slows when it burns
into recently burned areas, with the most noticeable effects arising when the previ-
ous fire occurred less than 20 years ago. Similar self-regulating landscape proper-
ties have also been inferred in pre-management historical fire regimes (Taylor and
Skinner 2003; Scholl and Taylor 2010). In this way, any one fire exerts a negative-
feedback regulatory influence on the subsequent fire event, with varying periods of
persistence. As this dynamic is ramified across many patches on the landscape, the
result is self-regulation, which may be a fundamental property of fire as an ecosystem
process (Chap. 3). From the energetic perspective, these self-limiting interactions
might be viewed as an equilibrium—if an uneasy one—regulated by cycles of
conversion between potential and kinetic (thermal) energy (Fig. 1.3).

1.2.2 Self-Reinforcing Properties of Landscape Fire

Another kind of landscape regulation also occurs, the self-reinforcing case. The
clearest example of this is the tendency of many vegetation types—grasslands,
ponderosa pine, chaparral, and lodgepole pine forest—to create fire regimes that
favor their perpetuation and expansion. This occurs because dominant species cre-
ate the physical environment and fuel complex that govern the fire regime, and in
turn the fire regime reinforces a competitive hierarchy that favors these species
(Rowe 1983; Agee 1993). For instance, the architecture of lodgepole pine (Pinus
contorta) forests in the interior West—dense stands of trees with high canopy
connectivity—tends to favor crown fire propagation, which kills most trees, giving
an advantage to cohort reproduction by lodgepole due to its evolved capacity for
serotiny (FEIS 2009).

Similarly, the open stand structure of many southwestern ponderosa pine
(P. ponderosa) stands creates an open layer of surface fuels and grasses that carries
relatively low intensity surface fires, killing seedlings and maintaining an open forest
structure while generally causing relatively little or no mortality among canopy
trees (Allen et al. 2002). Many grassland ecosystems have self-reinforcing fire
regimes, with cured grasses providing fuel for fast-moving fires that burn off cured
foliage and kill seedlings of woody species, while little heat penetrates to the apical
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meristem of the grasses, which has evolved to survive precisely such events (Brown
and Smith 2000).

Whereas landscapes that are controlled by the self-limiting dynamic occupy a
basin of attraction, under some conditions “escape” from this basin occurs, and the
system moves into a new dynamic space (Gunderson and Holling 2001). Escape
from an attractor may arise from stochastic rare events, including forcing by exog-
enous factors. For example, repeated fires at unusually short intervals may inhibit
the recovery of certain plant species, allowing colonization by new species and a
shift in the successional trajectory (Keeley et al. 1981; Suding et al. 2004). Weather
conditions that promote an unusually severe or extensive fire, such as extended
droughts, can also alter successional patterns. If the new vegetation is more flam-
mable, slower growing, or more or less susceptible to a local insect or pathogen, the
shift in the disturbance/succession dynamic may be sufficient to move the land-
scape to a stable state in a new basin of attraction (Chap. 8).

Climate change may accelerate these shifts to new basins of attraction, as distur-
bances such as fire change landscapes abruptly. Coupled with other complicating
factors like invasions, landscape self-regulation can become chaotic. For example,
climate-driven changes in fire extent, severity, or frequency, in conjunction with an
invasive species such as cheatgrass (Bromus tectorum), buffelgrass (Pennisetum
ciliare), or less prolific annuals, can quickly reset the connectivity of a fire-prone
landscape such that species composition and spatial structure accelerate away from
the previous attractor into a very different system (Zedler et al. 1983; Fischer et al.
1996; Esque et al. 2006). Typically, such landscapes will exhibit more spatial
homogeneity and simple structure—in the worst-case (so far) scenario, vast areas
covered by invasive annuals in which there was formerly a mosaic of longer-lived
shrubs and discontinuous fine fuels. These novel systems can be impressively
resistant to change, however, as reflected in the difficulty of returning an
invaded grassland to its pre-invasion composition. Part of the reason is that the
new system includes a strong element of self-reinforcement in its new configu-
ration. For example, desert grasslands that have been invaded by Old World
grasses have greater fine fuel mass and continuity than the pre-invasion com-
munity; this new fuel complex promotes fire spread, which eliminates fire-
sensitive native species while favoring the pyrophilic invaders (Zouhar et al.
2008; Stevens and Falk 2009).

1.2.3 Top-down Vs. Bottom-up Controls

Energetic inputs and their regulation can be top-down or bottom-up, depending on
the scale of spatial heterogeneity at which they act. For example, solar radiation,
whether used to fix carbon between fires or to heat and dry fuels during a fire, is a
top-down KE input. This energetic input is then subjected to further top-down regu-
lation by locally homogeneous spatial fields of humidity, atmospheric pressure,
temperatures, and precipitation. Fuels (stored PE) also become a source of thermal
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(kinetic) energy during a fire (Table 1.2). At finer scales, varying fireline intensity
or flame length are associated both with fine-scale heterogeneity of fuels (spatial
patterns of bottom-up inputs of PE), and with bottom-up regulation (e.g. by fuel
moisture and topographic control of fire spread) of the PE—SKE conversion associ-
ated with spatial variation in topography or fuel abundance at finer scales.
Topographic barriers to fire spread shape and limit the size of individual fires, by
creating spatial variation in flux rates, and over time produce spatiotemporal pat-
terns of fire history of varying complexity (Kellogg et al. 2008). In general, vari-
ables with coarser resolution than these spatio-temporal patterns are associated
with top-down controls, whether energetic or regulatory, whereas variables with
finer resolution than this energy transfer are bottom-up controls.

In the language of pattern and process, energy flux represents process in land-
scape fire ecology, whereas regulation associated with the spatial distribution of
energy represents landscape pattern. An obvious example of the latter is the spatial
distribution of fuels (potential energy). Ideally we should be able to both quantify
and predict landscape pattern change by measuring the relative strength of top-down
vs. bottom up regulatory controls. For example, a dominance of top-down energy or
regulation will homogenize and coarsen landscape pattern, whereas a dominance of
bottom-up components will induce more complex (heterogeneous) spatial patterns
to emerge. The spatial scale at which fire is “expressed” on the landscape is inter-
mediate between the scales of variation of top-down vs. bottom-up components.

The expression of energy and regulation changes across scales, as some pro-
cesses act cumulatively and others change qualitatively. For example, the energy
transformed in the combustion process is a measurable physical property that is
additive as a fire spreads, with output rates (e.g., J s'm?) varying with external
drivers and regulatory constraints such as fuel moisture and slope steepness. In
contrast, topographic regulation across the landscape (e.g., ridges and valleys, bar-
riers vs. corridors) changes combustion conditions and fire behavior in coherent
spatial patterns correlated with aggregate patterns of slope and aspect. Similarly,
with fuels, the expression of spatial heterogeneity changes from variation at fine
scales (e.g., packing ratio) to larger-scale variation in landscape connectivity that
influences fire shapes, sizes, and duration.

1.2.4 Landscapes and the Middle-Number Domain

The top-down and bottom-up organization implicit in the ERS framework might
suggest that hierarchy theory could be a useful framework for studying landscape fire.
Hierarchies are proposed to evolve in open dissipative systems, such as landscapes,
establishing a regulatory structure (O’Neill et al. 1986). To our knowledge, however,
hierarchy theory has not been applied successfully to landscape fire or similar
landscape disturbances. We believe that the contagious and mercurial nature of fire,
expressed as rapid temporal fluxes that greatly exceed the rates of other energy fluxes
at both fine and coarse scales, confounds a hierarchical approach to the landscape
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ecology of fire. What works well for trophic structure in ecosystems, which can be
studied over time scales of days to years, breaks down under the “metabolic” rates
associated with fire: velocities can vary by orders of magnitude and temporal pulses of
fire effects are far shorter than successional recovery. As such, fire is a “perturbing
transitivity” (Salthe 1991) that melts hierarchical structure. Furthermore, hierarchy
theory posits that ecosystem function is “driven” (forced) from lower hierarchical
levels (finer scales) and constrained by upper levels (coarse scales). In our view, drivers
(energy) and constraints (regulation) can issue from both coarser (top-down) and finer
(bottom-up) scales than the level of interest, i.e., the landscape.

At the broadest scales, we can model fire occurrence and extent with aggregate
statistics (e.g., Chap. 5; Littell et al. 2009) and capture meaningful information
about fire regimes. Broad-scale regulators such as climate or derived variables such
as water deficit can explain much of the variance in flux rates that manifest as
regional area burned (Chaps. 4 and 5). At fine scales, fire’s interactions with indi-
vidual ecological objects (e.g., trees) are fairly straightforward to quantify. For
example, individual tree mortality is closely associated with fireline intensity and
flame length (energy flux) and tree resistance (e.g., bark thickness as a flux resistor)
(Ryan and Reinhardt 1988). At both ends of the spectrum, both the energetic and
regulatory components can be identified.

It is the intermediate scales that are problematic in the study of fire because of the
interaction of bottom-up and top-down regulation. Recall that we have characterized
a contagious disturbance as one whose properties depend on its interactions with
landscape elements (Peterson 2002). The spatial heterogeneity of these interactions
confounds attempts to predict fire area (or more importantly, fire severity) from
spatially homogeneous top-down controls (e.g., weather), while also propagating
and exacerbating estimation errors for many properties of fires that are computable
at fine scales (Rastetter et al. 1992; McKenzie et al. 1996; Keane and Finney 2003).
Fire as a contagious disturbance is thus inherently a multi-scale process.

This “modal” domain of fire, influenced by top-down and bottom-up controls on
energy fluxes, which we refer to as the “landscape”, is a middle-number system
(O’Neill et al. 1986) with respect to ecological objects we can observe (growing
trees, fuel transects, pixels, fire scars, animals—Fig. 1.5). We hypothesize here (and
elsewhere—see Chap. 2) that in disturbance-prone landscapes, the physical limits
to the extent of contagious disturbance coincide with the upper end of the middle-
number domain. This is roughly equivalent to the spatial extent of the largest fires
and the time frame of the fire cycle. At spatial scales much larger than the largest
fires, and at time frames longer than the characteristic fire cycle, aggregate statistics
suffice to characterize fire regimes. Indeed, for the purpose of understanding fire
we define “landscape” as the spatial scale at which these middle-number relation-
ships converge.

Ideally, analyses in the middle-number domain will be suitable for application
of the ERS paradigm, if we can identify two thresholds. At the fine end of the
gradient (near the origin in Fig. 1.5), what energetic and regulatory functions
(Table 1.2) are in play up until a threshold at which spatial pattern starts to matter,
where spatial contagion becomes a player in ecosystem dynamics? At the coarser
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Fig. 1.5 Spatial scaling domain of landscape fire. Landscape fire regimes occupy the middle-
number domain for objects of analysis—trees, stands, pixels, etc. A middle-number domain is “in
between” the finer scales at which the number of observations and computations on them are still
analytically tractable and the coarser scales at which aggregate statistics can explain sufficient
proportions of system variability for meaningful inferences. This is the spatial domain of maxi-
mum complexity (O’Neill et al. 1986), where bottom-up (BU) and top-down (TD) controls con-
verge. The Gaussian-like curve represents a mean of many processes whose individual
“complexity curves” may be less regular, e.g., perhaps even monotonic or bimodal

end of the scale gradient, what are the energetic and regulatory components
effecting the breakdown of contagion, such that top-down controls are in effect
and simple aggregate statistics like means and variances suffice to capture varia-
tion in process and pattern? Between these thresholds, we would further seek
some measure of how contagion changes across scale, as we have with more
traditional properties of fire regimes such as fire frequency (Falk et al. 2007). To
that end, we need to move from an ad hoc definition of contagion in relation to
disturbance (see above) and establish a metric, or set of related metrics, to quantify
it in a meaningful way. A spatially correlated physical process such as heat flux
would be a good candidate for a covariate; i.e., the neighborhood effects of
heat flux should modulate the strength of contagion, along with spatial variation in
potential energy (fuel).

Perhaps the most elegant solution to quantifying how contagion changes across
scale would involve deriving a scaling law linked to other sources of variability. For
example, self-similar topography, if sufficiently dissected to produce bottom-up
controls on energy flux (fire spread), produces scaling laws in fire-regime properties
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(Kellogg et al. 2008; Chap. 2). Characteristic scales, or correlation lengths, of
bottom-up controls (Fig. 1.4) might determine at what spatial scale contagion must
be produced solely by external (top-down) drivers such as fire weather uncon-
strained by topography or connectivity of fuels. In this reduced case, limits to
contagion would depend only on the spatial extent of extreme weather events (com-
bined with available fuel), which are known to drive the largest wildfires.

To motivate the ERS framework as a potential solution to the middle-number
problem in landscape fire, we therefore need to demonstrate how explicit scaling
laws can bridge the gap between simple means and variances, i.e. aggregate statis-
tics that work at fine or broad scales, and the complexity of middle-number systems
that varies across scales in non-obvious ways. Specifically, we need to specify scal-
ing of energy and regulation in a way that reduces the dimensionality, and potential
for error propagation, through calculations on middle-number data.

We take it as axiomatic that energy and regulation covary across scales of space
and time. Scaling laws represent stochastic processes that have been codified from
multiple realizations across spatial and temporal scales (Lertzman et al. 1998).
They also preserve the total information in a system better than aggregate statistics.
For example, historical fire regimes comprise multiple realizations of individual
events, whose landscape memory is in fire-size distributions and the vegetation
mosaic (Chap. 3) or time-series of fire scars (Kennedy and McKenzie 2010). We may
not be able to accurately reconstruct each individual realization (Chap. 7; Hessl
et al. 2007), but we can back-engineer elements of the stochastic process (McKenzie
et al. 2006; Kellogg et al. 2008) from the scaling relations, preferably in units of
energy and regulation.

Falk et al. (2007) showed analytically how fire-regime information can be
preserved in a scaling relation for fire frequency—the interval-area (IA) relation.
Modeling across the middle-number domain under the ERS framework would
explore analogous scaling patterns involving the more mechanistic “primitives” of
fire regimes associated with the classic “fire triangle” (Table 1.2). Both energy-like
and regulating elements are subject to scaling relations, and something akin to a
covariance structure across scale is quantified, using these elements separately or
in combination. An example of the latter would be the potential energy in a
weighted combination of slope aspect, fuel loading, and packing ratio (sensu
Rothermel 1972) represented in variograms.

We reiterate that the details of this theory are yet to be specified. Given such a
theoretical framework, we need then to develop landscape experiments—probably
simulation experiments—that not only test inferences but also demonstrate their
tractability for quantifying landscape disturbance in the middle-number domain.
Following this, we should attempt to “track” ERS components through ecosystem
processes, beginning with the energetics themselves, from quantification of produc-
tivity and biomass pools (KE—PE and storage time) to heat-release dynamics
(PE—KE). A later state of development could translate these energy fluxes to
spatial fire-effects information, such as burn severity matrices, postfire patch char-
acteristics, and other changes at scales useful to management.
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1.3 Some Implications

Real improvements in landscape ecology theory will eventually be reflected in
improved management of landscapes. The urgency for optimizing landscape man-
agement is heightened today with changes in climate, land use, and disturbance
regimes affecting landscapes at ever broader scales (Chaps. 10 and 11). The transla-
tion of theory and science into appropriate and realistic management is always
imperfect (Schmoldt et al. 1999). How does an energetic framework for landscape
disturbance inform and improve management?

First, there are profound examples of what can happen when we ignore these
principles of energetics, regulation, and scale. A basic principle of ecosystem ener-
getics is that energy is not permanently stored in biomass; at some point, that
biomass must either decompose or combust, releasing energy. By ignoring this,
suppression policies throughout the twentieth century led to accumulated potential
energy in biomass, and we should not have been surprised by the extent and sever-
ity of late twentieth-century wildfires. The expectation that every fire could be
suppressed became less and less realistic as the potential energy in ecosystems
grew, such that now the synergy of increased kinetic energy in a warming climate
with abundant fuel has jeopardized ecosystems as sustainable sources of goods and
services (Peters et al. 2004; Baron et al. 2009; Joyce et al. 2009).

We have also been caught by surprise when we have ignored some powerful
regulators and what can change when they are no longer in force. For example,
before the establishment of exotic vegetation such as cheatgrass and buffelgrass
(Fischer et al. 1996; Esque et al. 2006), fire extent in arid rangelands was limited
by the patchiness of flammable vegetation. This “regulation” maintained spatially
heterogeneous landscapes with a concomitant diversity of habitat for species such
as sage grouse (Fischer et al. 1996). Cheatgrass and other similar invasives have
taken the energy-regulation dynamic out of equilibrium in arid rangelands, leading
to a self-reinforcing pattern of change in the fire regimes (Chap. 8).

Attention to the principles of scaling can improve the focus and spatial resolu-
tion of management. For example, understanding how patch structure changes
across scale is important for designing management plans, reserves, etc. (Baker
1989; Fahrig 1992; Parody and Milne 2004). Much energy has gone into document-
ing the importance of scale in landscape ecology (Peterson and Parker 1998; Turner
et al. 2001; Wu et al. 2006), but considering the interplay of energy and regulation
can be particularly cogent.

As an example, consider the tradeoff between maximizing C sequestration (in
forests) and maintaining resilient landscapes under future fire regimes in a warming
climate (North et al. 2009). Fuel treatments, and other practices in managed land-
scapes such as reduced planting densities, may remove biomass and release C but (if
surface fuels are removed) can reduce the extent and intensity of subsequent fires
(Peterson and Johnson 2007; Chap. 10). How does the ERS framework inform our
choices about where, when, and how much? Fuel management is only as effective
as the top-down drivers of fire will let it be. How effective will our fuel treatments



1 Toward a Theory of Landscape Fire 21

be under drier more extreme fire weather (Chaps. 4 and 5)? How much of the landscape
needs to be “treated” (in ERS terms, the spatial pattern of PE altered) to reduce the
spread and growth of a fire? There are also temporal-scaling issues. For example,
biomass (PE) accumulates at different rates in different ecosystems. How often do
treatments need to be done to be effective?

We suggest that quantifying the potential energy stored in fuels, the strength of
regulation (topographic complexity and fuel connectivity), and the kinetic energy
associated with fire weather could provide valuable information for optimizing C
sequestration over a chosen temporal domain. Alternatively one could jointly optimize
C sequestration and other landscape metrics of interest (Kennedy et al. 2008), using
inputs of energy and regulation. Identifying thresholds beyond which regulation breaks
down (e.g., multiple megafires in the same year such as the Hayman, Rodeo-Chediski,
and Biscuit fires of 2002) would also be essential (Chap. 5). With limited resources for
active management of landscapes, a parsimonious model, such as we seek to enable
with the ERS framework, could be a valuable tool to optimize the effectiveness of
management.

1.4 Conclusions

We have proposed a theoretical model of landscape fire grounded in the interactions
between energy fluxes and pools, and their controls, or “regulators”, across spatial
and temporal scales. If successful, an ERS framework could help identify the nature
and strength of top-down vs. bottom-up controls on landscape fire, and help to
solve two classic problems: the pulsed nature of fire cf. most ecosystem processes,
and the middle-number problem, which can make landscape-scale analyses intrac-
table at worst and fraught with uncertainty at best. A quantitative theory would
need to compare favorably with existing paradigms in reproducing observed struc-
tures and processes on landscapes, while providing parsimony in both analysis and
computation that could reduce uncertainty and increase the scope, both spatial and
temporal, of inference. We return to this idea in Chap. 12, in which we suggest
specifically how the analyses throughout this book might be transformed by an
energetic perspective.
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Chapter 2
Scaling Laws and Complexity in Fire Regimes

Donald McKenzie and Maureen C. Kennedy

2.1 Introduction

Use of scaling terminology and concepts in ecology evolved rapidly from rare
occurrences in the early 1980s to a central idea by the early 1990s (Allen and
Hoekstra 1992; Levin 1992; Peterson and Parker 1998). In landscape ecology, use
of “scale” frequently connotes explicitly spatial considerations (Dungan et al.
2002), notably grain and extent. More generally though, scaling refers to the sys-
tematic change of some biological variable with time, space, mass, or energy.
Schneider (2001) further specifies ecological scaling sensu Calder (1983) and
Peters (1983) as “the use of power laws that scale a variable (e.g., respiration) to
body size, usually according to a nonintegral exponent” while noting that this is one
of many equally common technical definitions. He further notes that “the concept
of scale is evolving from verbal expression to quantitative expression” (p. 545), and
will continue to do so as mathematical theory matures along with quantitative
methods for extrapolating across scales. In what follows, we operate mainly with
this quoted definition, noting that other variables can replace “body size”, but we
also use such expressions as “small scales” and “large scales” somewhat loosely
where we expect confusion to be minimal. We examine the idea of contagious dis-
turbance, how it influences our cross-scale understanding of landscape processes,
leading to explicit quantitative relationships we call scaling laws. We look at four
types of scaling laws in fire regimes and present a detailed example of one type,
associated with correlated spatial patterns of fire occurrence. We conclude briefly
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with thoughts on the implications of scaling laws in fire regimes for ecological
processes and landscape memory.

Landscape ecology differs from ecosystem, community, and population ecology
in that it must always be spatially explicit (Allen and Hoekstra 1992), thereby
coupling scaling analysis with spatial metrics. For example, characteristic scales of
analysis such as the stand, watershed, landscape, and region are associated with both
dimensional spatial quantities (e.g., perimeter, area, elevational range) and dimen-
sionless ones (e.g., perimeter/area ratio, fractal dimension). Similarly, properties of
landscapes such as patch size distributions are also associated with spatial metrics.
The tangible physical dimensions of landscapes obviate the often circuitous methods
required to define and quantify scales in communities or ecosystems.

2.2 Scale and Contagious Disturbance

A contagious disturbance is one that spreads across a landscape over time, and
whose intensity depends explicitly on interactions with the landscape (Peterson
2002). Some natural hazards (Cello and Malamud 2006), such as wildfires, are
therefore contagious, whereas others, such as hurricanes, are not, even though
their propagation may still produce distinctive spatial patterns. By the same
criterion, biotic processes can be contagious (e.g., disease epidemics, insect
outbreaks, grazing) or not (e.g., clearcutting). Contagion has two components:
momentum (also see energy, Chap. 1) and connectivity. Together they create
the aforementioned interaction between process and landscape. For an infec-
tious disease—the best-known contagious process—a sneeze can provide
momentum, while the density of nearby people provides connectivity. For fire,
momentum is provided by fire weather via its effects on fireline intensity and
heat transfer, whereas connectivity is provided by the spatial pattern and abun-
dance of fuels.

Momentum and connectivity covary in a contagious disturbance process such as
fire. Increases in momentum generally increase connectivity, and changes in con-
nectivity can be abrupt when the number of patches susceptible to fire reaches a
percolation threshold (Stauffer and Aharony 1994; Loehle 2004). For example,
Gwozdz and McKenzie (unpublished data) found that decreasing humidity across
a mountain watershed (momentum provided by fire weather) can abruptly change
the connectivity of fuels when the percentage of the landscape susceptible to fire
spread crosses a percolation threshold.

Interactions between momentum and connectivity may appear to be scale-
dependent in that they yield qualitative changes in the behavior of landscape distur-
bances when viewed at different scales, even though the mechanisms of contagion
per se do not change across scales. For example, the physical mechanisms of heat
transfer remain the same across scales, and fire spread does depend on local
connectivity of fuels, but estimates of connectivity across landscapes are sensitive
to spatial resolution (Parody and Milne 2004).
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2.3 Extrapolating Across Scales

Much study has gone into understanding how spatial processes change across
scales (Levin 1992; Wu 1999; Miller et al. 2004; Habeeb et al. 2005). Scale extrap-
olation is universally seen to be obligatory, because detailed measurements are
often only available at fine spatial scales (McKenzie et al. 1996), but also difficult.
Given a set of observations at coarse scales, however, it is important to understand
the distinction between average behavior of fine-scale processes and the emergent
behavior (Milne 1998; Levin 2005) of a system. Emergent behavior “appears when
a number of simple entities (agents) operate in an environment, forming more com-
plex behaviors as a collective”.! In the first case, the principal difficulty in extrapo-
lation is error propagation, producing biased estimates of the average or expected
behavior at broad scales because of the cumulative error from summing or averag-
ing many calculations (Rastetter et al. 1992; McKenzie et al. 1996). In the second
case, the difficulty is more profound, in that one must identify scales in space and
time at which qualitative changes in behavior occur.

Some qualitative models can partition scale axes in tractable ways. For example,
Simard (1991) developed a classification of processes associated with wildland fire
and its management that spanned many orders of magnitude on space and time
axes. This “taxonomy” of wildland fire, though not derived quantitatively from
data, was enough to build a logical connection to the National Fire Danger Rating
System (NFDRS—Cohen and Deeming 1985) that was of practical use (Simard
1991). Nevertheless, the limitations of such models are clear, in that qualitative
changes in system behavior and key variables are established a priori. In order to
relate processes quantitatively across scales, whether one is interested in average
behavior or emergent behavior, a tractable theoretical framework is needed.

Scaling laws are quantitative relationships between or among variables, with one
axis (usually X) often being either space or time. Many scaling laws are bivariate
and linear or log-linear, and are developed from statistical models, theoretical mod-
els, or both. Most commonly they are based on frequency distributions or cumula-
tive distributions wherein variables, objects, or events with smaller values occur
more frequently than those with larger values. The simplest scaling law is a power
law, for which a histogram in log-log space of the frequency distribution follows a
straight line (Zipf 1949, as cited in Newman 2005). Following Newman (2005), let
p(x) dx be the proportion of a variable with values between x and dx. For histo-
grams that are straight lines in log-log space, In p(x)=—a In x+c, where o and c are
constants (Newman 2005). Exponentiating both sides and defining C=exp(c), we
have the standard power law formulation

p(x)=Cx™* 2.1

'"'Wikipedia contributors, “Emergence,” Wikipedia, the Free Encyclopedia, http://en.wikipedia.
org/wiki/Emergence. Accessed 25 Jan 2010.
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The parameter of interest is the slope o (always negative for frequency
distributions), whereas C serves as a normalization constant such that p(x) sums
to 1 (Newman 2005). In the case of a frequency distribution, where Y values in a
histogram are counts, C can be rescaled in order to compare slopes among distri-
butions. Power-law relationships are often fit statistically by various binning
methods, with subsequent regression of bin averages on event size, but more
complicated maximum-likelihood methods may be more robust (White et al.
2008; Chap. 3).

Newman (2005) gives 12 examples of quantities in natural, technical, and social
systems that are thought to follow power laws over at least some part of their range.
His diverse examples include intensities of wars (Roberts and Turcotte 1998), mag-
nitude of earthquakes (National Geophysical Data Center 2010), citations of scien-
tific papers (Redner 1998), and web hits (Adamic and Huberman 2000). Newman
(2005) specifically excludes fire size distributions, while admitting that they might
follow power laws over portions of their ranges. Current opinion is divided among
those who would globally assign power laws to fire-size distributions (Minnich
1983; Bak et al. 1990; Malamud et al. 1998, 2005; Turcotte et al. 2002; Ricotta
2003) and those who would attribute them only to portions of distributions or rule
them out altogether in favor of alternatives (Cumming 2001; Reed and McKelvey
2002; Clauset et al. 2007; Chap. 3).

2.4 Scaling Laws and Fire Regimes

Wildfires affect ecosystems across a range of scales in space and time, and controls
on fire regimes change across scales. The attributes of individual fires are spatially
and temporally variable, and the concept of fire regimes has evolved to characterize
aggregate properties such as frequency, severity, seasonality, or area affected per
unit time. These aggregate properties are often reduced to metrics such as means
and variances, thereby simplifying much of the complexity of fire by focusing on a
single scale and obscuring ecologically important cross-scale interactions (Falk
et al. 2007).

Scaling laws can deconstruct aggregate statistics of fire regimes in two ways: via
frequency distributions that exhibit scaling laws, or by examining the scale depen-
dence of individual metrics. Fire-size distributions are an example of the first, in that
frequency distributions of fire sizes often follow power laws over at least portions of
their ranges (Malamud et al. 1998, 2005; Turcotte et al. 2002; Moritz et al. 2005;
Millington et al. 2006). Fire frequency, fire hazard, and spatial patterns of fire occur-
rence in fire history data are examples of the second, in that these statistics often
change systematically and predictably across the spatial scale of measurement
(Moritz 2003; McKenzie et al. 2006a; Falk et al. 2007; Kellogg et al. 2008). Here we
briefly discuss both the scaling patterns that have been found within each of these
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four metrics of fire regimes (size, frequency, hazard, spatial pattern) and the more
problematic attribution of mechanisms responsible for the scaling patterns.

2.4.1 Fire Size Distributions

Power laws have been statistically fit to fire size distributions from simulation mod-
els and empirical data at many scales, from virtual raster landscapes generated by
the “Forest Fire Model” (Bak et al. 1990) to historical wildfire sizes throughout the
continental United States (Malamud et al. 2005). Not all scaling relationships found
in fire-size distributions are power laws. For example, Cumming (2001) found that
a truncated exponential distribution, which defines an upper bound to fire size, had
the best fit to data from boreal mixedwood forests in Canada. Reed and McKelvey
(2002) suggest that the power law serves as an appropriate null model, but that
additional parameters in a “competing hazards” model improved the fit to empirical
data at regional scales. Ricotta (2003) suggests that power law exponents can
change with spatial scale, based on hierarchical fractal properties of landscapes,
providing a rejoinder to detractors of the power-law paradigm. An excellent review
of this topic, with discussion, is found in Millington et al. (2006). These authors
state, and we concur, that the value of discerning power-law behavior, or alterna-
tive, more complex nonlinear functions, would increase greatly if the ecological
mechanisms driving such behavior could be identified (West et al. 1997; Brown
et al. 2002).

Two mechanisms in particular have been proposed to explain power-law
behavior in fire-size distributions. Self-organized criticality (SOC—Bak et al.
1988) refers to an emergent state of natural phenomena whereby a system (be it
physical, biological, or socioeconomic) evolves to a state of equilibrium charac-
terized by variable event sizes, each of which resets the system in proportion to
event magnitude. In theory, the frequency distribution of events will approach a
power law because the recovery time from “resetting” varies with event magnitude.
SOC has been associated mainly with physical systems, particularly natural hazards
such as earthquakes and landslides (Cello and Malamud 2006), but its attribution to
power laws in fire regimes has typically been only at small scales (Malamud et al.
1998) or inferred from small-scale behavior (Song et al. 2001).

In contrast to SOC, highly optimized tolerance (HOT) emphasizes structured
internal configurations of systems that involve tradeoffs in robustness (Carlson and
Doyle 2002; Moritz et al. 2005), rather than the emergent outcomes of stochastic
though correlated events as in SOC. For example, a HOT model that can be applied
to wildfires is the probability-loss ratio (PLR) model (Doyle and Carlson 2000;
Moritz et al. 2005), a probabilistic model of tradeoffs between resources (e.g., some
ecosystem function in natural systems or efforts to protect timber in managed sys-
tems) and losses (e.g., from fire). Solving the PLR model analytically produces a
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frequency distribution of expected fire sizes that follows a power law (Moritz et al.
2005). HOT provides a theoretical framework for examining ecosystem resilience
in response to fire events (Chap. 3).

2.4.2 Fire Frequency

The terms fire frequency and fire-return interval (FRI) are part of the currency of
ecosystem management. Fire frequency is often compared among different geo-
graphic regions and between the current and historical periods. For example, con-
siderable FRI data exist across the western United States (NOAA 2010), which can
be compared and used to build regional models of fire frequency (McKenzie et al.
2000). Both comparisons and model-building assume that all FRI data points rep-
resent a composite fire return interval (CFRI)—the average time between fires that
are observed within a sample area, but the likelihood of detecting a fire event clearly
increases as the search area is expanded. FRIs are inherently scale-dependent, despite
sophisticated methods for unbiased estimation of fire-free intervals (Reed and
Johnson 2004).

Scaling laws in fire frequency thus quantify the relationship between the area
examined for evidence of fire and the estimated fire return interval. This interval-
area relationship (IA—Falk et al. 2007) appears in low-severity fire regimes pro-
ducing fire-scars on surviving trees, mixed-severity fire regimes where fire
perimeters are estimated, and raster simulation models that produce a range of fire
severities and fire sizes (Falk 2004; McKenzie et al. 2006a; Falk et al. 2007). In
each case, the A can be fit to a power law, whose slope (exponent) captures other
aggregate properties of the fire regime (Fig. 2.1). For example, larger mean fire
sizes produce less negative slopes, because small-area samples are more likely to
detect large fires than small fires. Simulations suggest that greater variance in fire
size, given equal means, also produces less negative slopes, for reasons that are
presently unclear (see Falk et al. 2007 for details).

In theory, then, the intercept in log-log space of the IA relationship reflects the
mean point fire-return interval (sample area=0 in the case of a point, or the area of
the minimum mapping unit otherwise), providing a “location” parameter to the
scaling law (Falk et al. 2007). Also in theory, the exponents in the IA relationship
could be derived from the properties of fire-size distributions, possibly means and
variances alone, although extreme values (rare large fires) make this difficult. This
connection to fire size is useful because predictive modeling of fire sizes, though
subject to substantial uncertainty, is less problematic than predicting fire frequency
(McKenzie et al. 2000; Littell et al. 2009). Further work is necessary, though, to
connect the TA relationship to estimates of fire sizes, or fire-size distributions.

Another metric of fire frequency, the fire cycle, or natural fire rotation, refers,
on a particular landscape, to the time it takes to burn an area equal to that landscape.
The fire cycle is presumably independent of spatial scale if the sample landscape is
much larger than the largest fire recorded within it (Agee 1993), but calculating it
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Fig. 2.1 Interval-area (IA) relationships (power laws) in log-log space for two watersheds in
eastern Washington. WMPI=Weibull median probability interval. The more negative slope in
Swauk Creek is a result of smaller fire sizes and more frequent fire occurrence than in Quartzite.
Quartzite displays a minor but noticeable (concave down) departure from linearity (Redrawn and
rescaled from McKenzie et al. (2006a))

depends on accurate estimates of the sizes of every fire in the sample. This is a difficult
task in historical low-severity fire regimes, in which most fire-frequency work has
been done (Hessl et al. 2007; Chap. 7). Furthermore, Reed (2006) showed that the
mathematical equivalence between the fire cycle and the mean point FRI only holds
if all fires are the same size, limiting the usefulness of the fire cycle as a metric of
fire frequency.

2.4.3 Fire Hazard

Fire hazard in fire-history research quantifies the instantaneous probability of fire,
and is derivable from distribution functions of the exponential family (e.g., negative
exponential and Weibull) associated with the fire cycle (stand-replacing fire—
Johnson and Gutsell 1994) and the distribution of fire-free intervals (fire-scar
records—McKenzie et al. 2006a). The hazard function may be constant over time,
reflecting a memory-free system in which current events do not depend on past
events, and producing exponential age class distributions of patches in stand-
replacing fire regimes (Johnson and Gutsell 1994). In contrast, an increasing hazard
of fire over time (or decreasing, but this is rarely seen in fire regimes) reflects a
causative factor, i.e. the growth of vegetation and buildup of fuel that facilitates fire
spread. This increasing hazard is represented mathematically by a shape parameter
in the Weibull distribution that is significantly greater than 1 (if this parameter is 1
the distribution reduces to the negative exponential—Evans et al. 2000). Moritz
(2003) observes, however, that the ecological significance of the shape parameter
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covaries with the scale parameter, representing, with fire, the mean fire-free interval.
For long fire-free intervals, shape parameters <2 represent fire hazard that increases
negligibly over time (Moritz 2003).

When the hazard function changes with spatial scale, it reflects changing con-
trols on fire occurrence. McKenzie et al. (2006a) and Moritz (2003) identified pat-
terns in hazard functions that were associated with the relative strength of transient
controls on fire occurrence and fire spread. In low-severity fire regimes in dry for-
ests of eastern Washington state, USA, McKenzie et al. (2006a) sampled composite
fire records at different spatial scales to examine the scale dependence of fire fre-
quency and fire hazard. At small sampling scales, hazard functions were signifi-
cantly greater than 1 (increasing hazard over time), particularly in watersheds with
complex topography, but declined monotonically with increasing sampling scale
(Fig. 2.2). McKenzie et al. (2006a) suggest that fire hazard on eastern Washington
landscapes increases over time at spatial scales associated with a characteristic size
of historical fires, reflecting the effects of fuel buildup within burned areas.

In high-severity fire regimes of shrublands in southern California, USA, Moritz
(2003) found no scale dependence in the hazard function except for one landscape
whose location and topography protected it from extreme fire weather (Fig. 2.3).
Fire hazard increased in response to the increasing flammability of fuels over time.
Over most of the region, however, fuel age-classes burned with equal likelihood,
because almost all large fires occurred during extreme fire weather, providing suf-
ficient inertia to overcome the patchiness of fuels and rendering the hazard function
essentially constant. In both these examples, then, scaling laws in fire hazard were
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Fig 2.2 The Weibull shape parameter decreases with scale of sampling in two watersheds in
eastern Washington. WMPI=Weibull median probability interval. Horizontal line marks the value
(1.6) at the 95% upper confidence bound for testing whether the parameter is different from
1.0—meaning no increasing hazard over time. Fires were larger and less frequent in Quartzite than
in Swauk Creek, so a shape parameter significantly greater than 1.0 may still be negligible eco-
logically, because shape and scale parameters co-vary (Moritz 2003 and Fig. 2.3) (Redrawn from
McKenzie et al. (2006a))
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Fig. 2.3 Hazard function scale and shape parameters sampled at different scales in high-severity
fire regimes in shrublands of southern California. The single point in the upper right represents
one sample at the finest spatial scale that was protected from extreme fire weather and shows
significantly increasing hazard over time. The positive covariance of the two parameters widens
confidence intervals on significance tests of the shape parameter’s difference from 1.0, sensu
McKenzie et al. (2006a) and Moritz (2003), such that even values~2.0 may not indicate increas-
ing fire hazard with time (Redrawn from Moritz (2003))

apparent only when controls were “bottom-up” (Kellogg et al. 2008, Chaps. 1 and 3),
i.e., produced by interactions between fine-scale process (the buildup of fuels over
time) and landscape pattern (topography and the spatial variability in fuel loadings),
and where extreme fire weather was uncommon.

2.4.4 Correlated Spatial Patterns

We emphasized earlier that a key property of landscape fire is contagion. The rela-
tive connectivity of landscapes with respect to fire spread and the momentum pro-
vided by fire intensity and fire weather jointly affect the probability that two
locations will experience the same fire event. If this probability attenuates system-
atically with distance, it can in theory be represented by a scaling law related to
contagion.

The cumulative effect of these probabilities over time can be seen clearly as the
similarity between two locations of the time series of years recording fire. In low-
severity fire regimes, this similarity is measured between two recorder trees (point
fire records) or area samples (composite fire records). Kellogg et al. (2008) com-
piled these time series for every recorder tree in each of seven watersheds in
Washington state, USA. They used a classical ecological distance measure, the
Jaccard distance (closely related to the Sgrensen’s distance [see below]—Legendre
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and Legendre 1998), to compare pairs of recorder trees at different geographic
distances, generating scatterplots analogous to empirical variograms (hereafter SD
variograms). Spherical variogram models, and power-law functions, were fit to
these aggregate data for each watershed (McKenzie et al. 2006b; Kellogg et al.
2008; and the example below). Both types of models had better explanatory power
in more topographically complex watersheds.

2.4.5 Mechanisms

Power laws abound in nature and society, but to date explicit mechanisms that
produce them, and the parameters associated with their variability, have been dif-
ficult to identify. Purely stochastic processes can produce power laws (Reed 2001;
Brown et al. 2002; Solow 2005), as can general dimensional relationships among
variables, the most familiar being Euclidean geometric scaling (Brown et al.
2002). Brown et al. (2002) suggest that when scaling exponents in power laws
(o in Eq. 2.1) take on a limited or unexpected range of values they are more likely
to have arisen from underlying mechanisms. Examples of this are in organismic
biology, where the fractal structure of networks and exchange surfaces clearly
leads to allometric relationships (West et al. 1997, 1999, 2002) and in ecosystems
in which there are strong feedbacks between biotic and hydrologic processes
(Scanlon et al. 2007; Sole 2007).

How might we identify the mechanisms behind scaling laws in fire regimes? We
propose two general criteria, based on our overview above, as hypotheses to be
tested. Criterion #1 suggests how mechanisms produce scaling laws, whereas crite-
rion #2 provides necessary conditions for scaling laws in fire regimes to be linked
to driving mechanisms.

Point/stand Regional
process Landscape pattern forcings
Bottom-up contral Caontagion = emergence Top-down control
-« >
Fire intensity from fuel loading Topography Climatic variability
Fire spread from fire weather / Spatial pattern of fuels Fire synchrony
Complexity Constraint
{generates power-law behavior) {changes scaling exponents)

Fig. 2.4 Scaling laws in fire regimes are expected when bottom-up controls predominate and they
interact strongly with landscape elements. For the contagious process of fire, fine-scale mecha-
nisms provide momentum and topography and spatial pattern of fuels control connectivity (see
text for discussion of contagion). In contrast, top-down controls (climate) increase fire size and
therefore fire synchrony on landscapes where they are dominant, e.g., with gentle topography or
continuous fuels. This favors irregular frequency distributions and lessens the scale dependence of
fire frequency, hazard functions, and spatial patterns
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1. Bottom-up controls are in effect: Drawing on O’Neill et al. (1986), we propose
a hierarchical view of fire regimes that focuses interest on landscape scales
(Fig. 2.4). Mechanisms at a finer scale below drive fire propagation, and interac-
tions between process (fire spread) and pattern (topography and fuels) generate
complex spatial patterns. When landscape spatial complexity is sufficient, fire
spread and fuel consumption produce the spatial patterns that are reflected in
the TA relationship, the hazard function, and the SD variogram. Conversely to
one paradigm of complexity theory that posits that simple generating rules can
produce complex observable behavior, we therefore see that relatively simple
aggregate properties of natural phenomena—scaling laws—are the result of
complex interactions among driving mechanisms.

2. Contagion provides a linkage among observations: We submit that if events
(fires) are separated by more distance in space or time than some limit of conta-
gion, observed scaling laws cannot be reasonably linked to a driving mechanism.
Mechanism requires “entanglement” (as in the quantum-mechanical sense). For
example, both SOC and HOT, mentioned above, require that events within a
domain influence each other, whether one event resets system properties in
proportion to its magnitude (SOC) or multiple events interact as they propagate
through a system (HOT). The range limit of contagion clearly changes as a func-
tion of variation in fine-scale drivers. As we said earlier (see also Chap. 1),
increasing energy (momentum) effectively increases connectivity, e.g., when
extreme fire weather overcomes barriers to fire spread that are associated with
landscape heterogeneity (Turner and Romme 1994).

Criterion #2 does not preclude some mechanism for power-law behavior across
continental-to-global scales; it just limits the hierarchical interpretation in criterion
#1 to spatial scales at which contagion occurs. Other explanations for power laws
in nature and society do exist, however, including the purely mathematical (Reed
2001; Solow 2005).

2.5 Example: Power Laws and Spatial Patterns
in Low-Severity Fire Regimes

We now turn to an example, briefly alluded to above, from low-severity fire regimes
of eastern Washington state, USA (Everett et al. 2000; Hessl et al. 2004, 2007,
McKenzie et al. 2006a; Kellogg et al. 2008; Kennedy and McKenzie 2010).
Detailed fire-history data were collected in seven watersheds east of the Cascade
crest, along a southwest—northeast gradient (Fig. 2.5). In contrast to most fire his-
tory studies, exact locations of all recorder trees were identified, creating an
unprecedented opportunity for fine-scale spatial analysis (McKenzie et al. 2006a;
Hessl et al. 2007; Kellogg et al. 2008). For a detailed description of the data and
methods, see Everett et al. (2000) or Hessl et al. (2004).



38

D. McKenzie and M.C. Kennedy

WASHINGTON

E - Entiat




2 Scaling Laws and Complexity in Fire Regimes 39

b

SD - South Deep

,, SC - Swauk Creek

FC - Frosty Creek

Fig. 2.5 Fire history study sites, east of the crest of the Cascade Mountains, Washington, USA.
(a) Watershed locations. (b) Inserts that display hill shaded topography with dots representing the
locations of recorder trees
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Kellogg et al. (2008) fit the aforementioned empirical SD variograms to
spherical models, in keeping with standard practice in geostatistics (Rossi et al.
1992), which uses variograms chiefly for spatial interpolation. Interpolation is
generally only feasible with spherical, exponential, or Gaussian variogram mod-
els, due to certain mathematical conveniences (Isaaks and Srivastava 1989), but
the spherical model in particular is a rather cumbersome artifact, with two sepa-
rate equations applying to observations within or beyond the range (Kellogg et al.
2008). McKenzie et al. (2006b) examined the same empirical variograms in
double logarithmic space and found that for some watersheds, the variograms
seemed linear or nearly so, both graphically and when fit with linear regression.
This suggested that power laws govern the correlated spatial pattern of fire histo-
ries. The observed pattern in these variograms was consistent across varying
distance lags used to construct the variogram. We seek to test the hypothesis in
criterion #1 (above) by trying to replicate the power-law behavior by controlling
fine-scale processes (bottom-up control), using a neutral landscape model (Gardner
and Urban 2007).

2.5.1 Neutral Model for Fire History

McKenzie et al. (2006a) developed a simple neutral fire history model to simulate
recorder trees on landscapes that are scarred by fires of different sizes and frequen-
cies. The purpose of the neutral model is to separate intrinsic stochastic processes
from the effects of climate, fuel loadings, topography and management. We have
enhanced the model to spread fires probabilistically on raster landscapes (Kennedy
and McKenzie 2010; Fig. 2.6). The raster model produces 200-year fire histories on
a neutral landscape, with homogenous topography and fuels. The raster landscape
is initialized with a spatial point pattern of recorder trees; this pattern is simulated
as a Poisson pattern of complete spatial randomness (CSR—Diggle 2003). A mean
fire return interval (p) is specified for the whole “landscape”, yielding a random
number of fires (n, ), drawn from a negative exponential distribution, within the
200-year fire history. For each fire, a random fire size is drawn from a gamma prob-
ability distribution (Evans et al. 2000) with the scale and shape parameters adjusted
to produce a specified mean fire size (u, ). For each fire in the fire history, an igni-
tion point (pixel) is randomly assigned and the fire is spread until it reaches the
randomly drawn fire size (i.e., area), or until all tests for fire spread fail in a given
iteration. When a pixel is burned, each of the four immediate neighbors that are not
yet burned is tested for fire spread against the spread probability (p, ). After the
neighbors are tested for fire spread, the burned pixel can no longer spread fire.

In a given fire, if a pixel is burned, then all trees located in that pixel are tested
independently for scarring in the same time step. This is a simple probability test,
with a specified scar probability (p_, ) that is uniform across all trees. This neutral
model was produced in particular to evaluate whether the pattern in the observed
SD variogram could be replicated by a simple stochastic model of fire spread, and
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Fig. 2.6 Fire spread for (a) p,, =0.75 and (¢) p,, =0.50. A complete spatial randomness (CSR)
process generates recorder trees (points), with trees scarred by associated fire (black-filled points
in b and d). A higher p,yields a more regular fire shape, although the difference in fire shape is
difficult to discern visually in the scar pattern

to explain what differentiates variograms that appear linear in log-log space from
those that do not. In order to satisfy the second goal, we considered whether the
value of Sgrensen’s distance between two trees could be predicted by features of
the neutral model.

2.5.2 Prediction of Sgrensen’s Distance

The Sgrensen’s distance can be analytically derived from conditional probabilities
associated with fire spread and the scarring of recorder trees. Within the context
of this neutral model, and under several assumptions verified by simulation,
Kennedy and McKenzie (2010) found that the Sgrensen’s distance (SD) for a pair
of trees a given distance apart is predicted by two features of the neutral model.
The first is the probability a tree in a burned pixel is scarred (p_,, which is spa-
tially independent), which in the neutral model is constant across all recorder trees
in the simulated landscape. The second model feature is the probability that two trees
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are both in a burned pixel in a given fire year (but not necessarily the same burned
pixel). Specifically, for the pair of trees A and B, we calculate the probability that
tree B is in a burned pixel (B,, ) given that tree A is in a burned pixel (P(B ﬂre|Aﬁm)).
For the stochastic model we consider the expected value of SD, and we found that
it is predicted by (Kennedy and McKenzie 2010)

E(SD)=1-P (B, 45 Pro 22)

The probability the second tree is in a burned pixel given the first is in a burned
pixel is not constant across pairs of trees, as it depends on the distance between the
two trees, the fire size, and fire shape (Fig. 2.7).

As the distance between two trees approaches 0, then the conditional probability

the second is in the fire given that the first is (P(B, |A, )) approaches 1, and Eq. 2.2
reduces to
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Fig. 2.7 Verification of the derivation of E(SD) via simulation and nonlinear regression.
(a) P(B ﬁreIAﬁre) with distance (d) predicted by 3-parameter model (neutral model p  =0.15=1500
pixels). (b) The fit to P(Bﬁm|Aﬁm) @,,bj,bl } with the p__set in the simulation (=0.5), used to predict
E(SD) and compared to calculated SD variogram from the same simulation (i.e., Eq. 2.5). It fits
well. (¢) The relationship of P(Bme|Aﬁm) with distance changes with mean fire size (p, ) and fire
shape as modified by the burn probability (p, ); (d) these differences are also shown in changes

to the shape of the SD variogram
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Therefore, one can estimate the p_ from an empirical SD variogram by the
mean SD at the smallest distance bin. Simulations confirmed that the value of p
would be>the mean value at the smallest distance bin.

We used a least-squares nonlinear regression algorithm in the R statistical pro-
gram (nls; R Foundation 2003) to fit simulated P(BﬁmlAﬁm) against distance (up to
half the maximum distance between simulated recorder trees—the same criterion
used to evaluate SD), for three candidate functions (Kennedy and McKenzie 2010).
The best fit with respect to an information—theoretic criterion (AIC) was found with
a three-parameter function:

P(B

e | A )= by —bd" 2.4)

and, therefore,
E(SD)=1-p,,, (b,-Dd") (2.5)

The coefficients {b,, b , b,} thereby characterize the change in P(Bﬁre|Aﬁre) with dis-
tance, and consequently the change in SD with distance. The estimates of b, b, and
b, in the neutral model change with increasing fire size, in a manner that depends on
the shape of the fire (Fig. 2.7). Fire shape is closely associated with p, , with lower
values of p, producing more irregular and complex shapes (Fig. 2.6). As the fire
becomes larger and more regular, then the relationship between P(B ﬁre|Aﬁre)
approaches a straight line with intercept b, and slope—b , i.e., b, gets closer to 1
(Fig. 2.7c; Table 2.1), and the slope (b,) becomes less negative. In contrast, for irregu-
larly shaped fires characteristic of p,, =0.5, the decline of P(B,_|A_ ) remains non-
linear with estimates of b, well below 1 across a range of values for u (Fig. 2.7c).

Note also that when b =1/p__ , a power law describes the SD variogram, because
we have:

E(SD)=p,,bd". (2.6)

which is the power-law relationship presented in Eq. 2.1.
Recall that the relationship P(B,, |A_ ) is independent of p__, and values of
{b,, b, b,} change withp, and p .Itis therefore possible to calibrate the values

Table 2.1 Parameter estimates for neutral model results with varying p (0.07, 0.20)
and Pyun (0.5, 0.75), and for the observed variograms (Twentymile, Swauk). Note that the
coefficients b are all negative, also indicated, for clarity, by the minus sign in Eq. 3.4

bO b] b2
u,. 0.07 Pyurn 0-50 1.430 -0.1990 0.235
Pourn 0-75 1.240 -0.0247 0.469
. 0.20 Pyurn 0-50 1.060 -0.0437 0.351
Pourn 0-75 1.030 -0.0010 0.805
Twentymile p.. 0.704 0.979 —-0.0008 0.788

Swauk p,., 0.689 1.492 -0.2270 0.195
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of u, . p,,, and p_ to make b j*p . arbitrarily close to 1, and thus manipulate
simulated results to produce a power-law relationship in the SD variogram. In the
neutral model this is a consequence of the mathematical relationships that we
have found, yet the exercise of calibrating the parameters reveals under what
conditions, as represented by p , p, . and p_ , power laws should be expected.
These can then be compared to the patterns observed in real landscapes, and
indicate the ecological conditions under which power laws are produced.

The challenge, then, is to evaluate the relevance of the neutral model results for
real landscapes insofar as the derived mathematical relationships are able to predict
the patterns observed. We fit Egs. 2.3, 2.5, and 2.6 to the SD variograms of real
landscapes on a gradient of topographic complexity; first we estimate p___as the
mean SD at the smallest distance bin in the observed SD variogram, then we fit
Eq. 2.5 to the variogram in order to estimate the coefficients {b, b, b,}. Here we
compare the two watersheds from Kellogg et al. (2008) that are at opposite ends of
this topographic gradient: Twentymile (least complex) and Swauk Creek (most
complex). Coefficient estimates are in Table 2.1, and Fig. 2.8 shows the contrasting
fits of the SD variograms from Twentymile and Swauk Creek in log-log space.

a Twentymile b Twentymile
109 observed fit 1.0
0.9~ - power—law fit 0.9+
0.8+
a A 074
N D 0.6
0.5+
0.4+
I I I I I 037,
0 1000 3000 5000 5
distance (m) distance (m)
c Swauk d Swauk
1.0
0.9
0.8
o) o) 07 —
“ Y 06
0.5
0.4
I [ [ I [ 0.3 T T T 1
0 2000 4000 6000 8000 5 50 500 5000
distance (m) distance (m)

Fig. 2.8 Observed SD variograms for the least (Twentymile; a,b) and most (Swauk; ¢,d) topo-
graphically complex sites. Swauk increases more rapidly at smaller distances, and reaches a higher
value. The Swauk fit is almost indistinguishable from the power-law prediction, with a small
separation at the lowest distance bins
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Clearly the relationship for Swauk Creek follows a power law (b, * p  =1.492 *
0.689=1.028=1; Eq. 2.6), whereas Twentymile does not (0.7 * 0.979=0.685).

These results suggest preliminary support for the hypothesis associated with
Criterion #1 (above): Topographic complexity provides a bottom-up control on the
spatial patterns of low-severity fire, producing relatively small fires and irregular
fire shapes (SD increases more rapidly with distance, and reaches a higher peak, in
Swauk Creek than Twentymile; Fig. 2.7). Neutral model runs with p, =0.5 (irreg-
ular fire shapes; Fig. 2.6a) and relatively small mean fire sizes produced coefficient
estimates similar to Swauk ({b,, b , b,}; Table 2.1) and SD variograms that fol-
lowed power laws with p_ near that estimated for Swauk. In contrast, neutral
model runs with p, = 0.75 (regular fire shapes; Fig. 2.6c) and larger mean fire
sizes produced coefficient estimates and SD variograms similar to those from
Twentymile (Table 2.1).

What do we gain, then, by deconstructing these scaling laws via simulation; e.g.,
can we back-engineer a meaningful, preferably quantitative, description of fire
regime properties that is relevant for landscape ecology and fire management?
Certain combinations of the probability of scarring, the probability that a cell burns
given that a neighboring cell has burned, and the mean fire size produce power-law
behavior in an aggregate measure—the SD variogram—that represents the spatial
autocorrelation structure of fire occurrence. For example, a low probability of scar-
ring suggests variable fire severity at fine scales. A moderate likelihood of a cell’s
burning given that its neighbor has burned (i.e., p, . =0.5) suggest fine-scale con-
trols on fire spread (topography and spatial heterogeneity of fuels). Mixed-severity
fires subject to fine-scale landscape controls over time (decades to centuries)
engender complex patterns that nonetheless produce simple mathematical struc-
tures (power laws). Further simulation modeling such as we describe here should
illuminate what additional structures and scaling relationships can arise from the
universe of complex interactions between the contagious process of fire and land-
scape controls.

2.6 Conclusions and Implications

Scaling laws in fire regimes are one aggregate representation of landscape controls
on fire. Cross-scale patterns can reflect landscape memory (Peterson 2002). For
example, fire-size distributions on landscapes small enough for fires to interact hold
a memory of previous fires (Malamud et al. 1998; Collins et al. 2009), as do shape
parameters of the hazard function on landscapes in which fuel buildup is necessary
to sustain fire spread (Moritz 2003; McKenzie et al. 2006a). Scaling laws in our SD
variograms hold a memory of all historical fires registered by recorder trees. We
have conjectured above that scaling laws arise when bottom-up controls are in
effect, but an additional possibility is that scaling relationships may be non-stationary
over time, reflecting changes or anomalies in top-down controls, specifically
climate (Falk et al. 2007). Mean fire size, fire frequency, and fire severity change
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with changes in climate and land use (Hessl et al. 2004; Hessburg and Agee 2005;
Littell et al. 2009). A rapidly changing climate may at least change the parameters
of scaling relationships, such as exponents in power laws derived from frequency
distributions, and at most make them disappear altogether. Such behavior could
indicate that a fire-prone landscape had crossed an important threshold (Pascual
and Guichard 2005), with implications for ecosystem dynamics and management.
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Chapter 3
Native Fire Regimes and Landscape Resilience

Max A. Moritz, Paul F. Hessburg, and Nicholas A. Povak

3.1 Introduction

First introduced by Holling (1973), the term “resilience” has been used widely in
the ecological literature, but it is not always defined and is rarely quantified.
Holling suggested that ecological resilience is the amount of disturbance that an
ecosystem could withstand without changing self-organized processes and struc-
tures. His description suggests that resilience may be: (1) represented by an observ-
able set of properties; (2) defined by measures of degree; and (3) related to system
states and their (in)tolerance to reshaping, and that some properties of resilience
may be quantifiable. We also see the idea of fire resilience in the literature (e.g.,
MacGillivray and Grime 1995; He and Mladenoff 1999; Diaz-Delgado et al. 2002;
Brown et al. 2004; Pausas et al. 2004), but this term has different meanings in
diverse contexts.

Despite disparate interpretations of resilience in the existing literature and of the
role that fire may play, many agree that there is important linkage between naturally
functioning fire regimes, the vegetation and terrain that fires move through, and the
climate and weather that promote a fire ecology. This linkage manifests itself in
fire-related plant traits (Bond and van Wilgen 1996), changes to landscape patterns,
processes, and ecosystem functioning when fire is suppressed (Agee 1993;
Hessburg et al. 2005), and potentially large changes as plant invaders alter native
fire regimes and plant community structure (D’ Antonio and Vitousek 1992).

One of the key challenges in defining properties of fire resilient landscapes is
identifying mechanisms through which fire influences and reinforces landscape
structure and functionality. What we observe on any single landscape is inevitably
a mixture of both ecological interaction and adaptive response (Herrera 1992),
providing only one snapshot in time and space. By choosing a relevant scale of

M.A. Moritz (0<)

Department of Environmental Science Policy and Management, Division of Ecosystem Sciences,
University of California Berkeley, Berkeley, CA 94720-001, USA

e-mail: mmoritz@berkeley.edu

D. McKenzie et al. (eds.), The Landscape Ecology of Fire, Ecological Studies 213, 51
DOI 10.1007/978-94-007-0301-8_3, © Springer Science+Business Media B.V. 2011



52 M.A. Moritz et al.

observation and similar biophysical settings, however, one may characterize a
breadth of ecological structure and organization that is a function of interactions
between species and processes operating within that scale (Peterson et al. 1998).
Ultimately, positive and negative interactions between organisms, tradeoffs between
exogenous and endogenous controls, and feedbacks between biotic and abiotic
variables must all influence the patterns of vegetation within an ecosystem and the
fire regime they co-create (Moritz et al. 2005).

The goal of this chapter is to examine mechanisms that might contribute to resil-
ience in fire-prone ecosystems and their persistence in the face of ongoing natural
disturbances and environmental variation. Our emphasis is on landscape patterns
and processes, as opposed to finer spatial scales relevant to the fire ecology of a
given species or patch. Because fire size distributions have been increasingly impor-
tant to descriptions and explanations of ecosystem organization and structure, we
examine datasets and examples from several different fire environments to look for
consistent patterns among them. This was important to us because disturbances like
fire have the greatest potential to restructure landscapes. Likewise, along with other
factors, the living and dead structure of the landscape after fires provides endoge-
nous feedback to future fire event and fire severity patterns (sensu Peterson 2002).

In particular, power law statistics have been used to characterize fire-event size
distributions and what may control them, so we will examine the theories and meth-
ods related to this approach. Given that pattern and scale continue to present some
of the most complex and interesting questions in ecology (Levin 1992), our intent
is to shed new light on interactions between fire and its drivers at different scales.
Without a better idea of how fire and ecosystem resilience are intertwined, their
management and conservation may be impossible, as human influences and cli-
matic changes continue to unfold.

3.2 Landscape Resilience

In order for an ecological system to persist and continue functioning in an environ-
ment with stochastic influences, it must be able to recover or rebound after distur-
bance. Intuitively, this is what many of us think of when the term resilience is used.
Landscape resilience would thus apply to ecological persistence or a sort of meta-
stability (sensu Wu and Loucks 1995) and continued functioning at a meso-scale,
above that of vegetation patches and below that of physiographic province.
Regardless of scale, a “ball-in-cup” model with one or more basins of attraction is
often employed as a metaphor. This qualitative notion is somewhat vague, however,
and there has been a profusion of literature and much confusion over terminology
(e.g., Grimm and Wissel 1997) about what resilience actually means.

We introduce resilience concepts that are covered extensively in the edited vol-
ume of Gunderson and Holling (2002), due largely to members of the Resilience
Alliance (http://www.resiliencealliance.org). In their parlance, there is engineering
resilience, which focuses on system stability and the capacity to resist movement
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away from an equilibrium state, as well as the speed with which it can return to
equilibrium. On the other hand, ecosystem resilience highlights non-equilibrium
conditions and the ability of a system to absorb disturbance, changing and reorga-
nizing to maintain structure and functionality over time. Holling and Gunderson
(2002) draw a distinct contrast between engineering resilience (i.e., emphasizing
efficiency, control, constancy, predictability) and ecosystem resilience (i.e., empha-
sizing persistence, adaptation, variability, unpredictability), although aspects of
both would appear necessary for resilience in the face of ongoing fire events.

To consider landscape resilience, it is useful to scale these two concepts.
Engineering resilience seems to emerge most clearly at relatively fine scales of
space and time, under relatively more homogeneous conditions that arise from local,
deterministic, and mostly bottom-up or endogenous controls. In contrast, ecosystem
resilience emerges at meso- and broader scales, arising from a mix of bottom-up,
top-down, and stochastic influences. Cross-scale resilience, a third concept put forth
by Peterson et al. (1998), emphasizes the distribution of functional diversity within
and across scales to allow, for example, regeneration after disturbances such as
wildfire. To paraphrase Peterson et al. (1998), we will suggest that although most
patterns and processes interact within system levels, there is also a certain amount
of cross-talk or “leakage” between levels. This is especially true where processes
and patterns reach their upper and lower bounds, or process domains, and where
bounding is fuzzy or porous in nature. Wu and Loucks (1995) referred to this as
loose vertical coupling: strongly coupled interconnections of patterns and processes
within an observed level of organization, but cross-scale connections from the con-
text (bottom-up) and constraint (top-down) levels in the fuzzy transition zones
between levels. We illustrate an example of this later in the chapter.

Although processes and patterns at different scales are said to self-organize
(Kauffman 1993), the origin and structure of relevant feedbacks and forcing factors
are seldom quantified. How do these feedbacks and factors relate to landscape resil-
ience? We know that species interactions with their local environments, disturbance
regimes, and other ecological processes can lead to species sorting, structuring of
communities, and ecological patterns of conditions to support them over moderate
time scales (e.g., centuries to millennia, Moritz et al. 2005). However, species per-
sistence and ecological functioning must also accommodate infrequent extreme
events that may overwhelm bottom-up controls and any self-reinforcing feedbacks
that may have developed in conjunction with more moderate disturbances. How
ecosystems recover and continue functioning across the full distribution of events
in a naturally functioning fire regime is therefore a key to landscape resilience.

3.3 Fire Regime Characterization

The fire regime (Gill 1975; Romme 1980) is a simplifying construct used throughout
this book, so only a few of the relevant features are covered here. A conceptual
framework for depicting controls on fire at different scales is presented in Fig. 3.1,
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Fig. 3.1 Controls on fire at different scales of space and time. This framework adds a fire regime
triangle (upper right) to the traditional triangles used to characterize combustion (lower left) and
the fire environment (middle). Mechanisms most relevant to landscape resilience would tend to be
operating at and in between the scales of wildfire and a fire regime. Arrows represent feedbacks
between fire and the forces controlling fire at different scales

which combines the traditional “fire triangles” for combustion and wildfire with
one for fire regime controls at the broadest scales. This framework was introduced
in Moritz (1999) and developed in subsequent work (Davis and Moritz 2001;
Moritz et al. 2005; Krawchuk et al. 2009; Parisien and Moritz 2009). Others, nota-
bly Martin and Sapsis (1992) and Bond and van Wilgen (1996), have also identified
similar fire regime controls.

An excellent source for more general background on disturbance regimes is the
edited volume of Pickett and White (1985). Despite the ongoing relevance of this
early synthesis, there has been relatively little theoretical progress in disturbance
ecology over the last 25 years. There have certainly been advances in understanding
of individual ecological disturbances, such as fires, avalanches, debris flows, and
floods, and a significant literature documents these insights. On the whole, how-
ever, still lacking are a general conceptual framework and body of quantitative
methods that form the basis of disturbance ecology as a thriving research field in
its own right (White and Jentsch 2001).

Because fire is a naturally recurring process, it can be statistically characterized
by how often it occurs, when it occurs, the extent of area burned, and burn intensity.
For example, one might be interested in the mean return interval of fire, some mea-
sure of interval variance, or the best fitting statistical distribution that describes the
probabilities of all possible return intervals. An applied use of fire return interval
distributions is to transform them into a measure of the “hazard of burning”
(Johnson and Gutsell 1994). This hazard measure is used to quantify the degree to
which fire probabilities change with time since the last fire (e.g., due to plant age
or size effects, species composition, fuel density, or accumulation). This analytical
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approach originates largely in the forestry literature, but it has also been applied to
the fire regime of chaparral shrublands across southern California (Moritz et al.
2004). Censored observations of fire return intervals (i.e., open-ended intervals that
were at least age X when burned) are common in many fire datasets, and they can
alter statistical outcomes and interpretations substantially (Polakow and Dunne
1999, 2001). Although return intervals are only one fire regime property, their char-
acterization is an active area of research (Moritz et al. 2009).

Other fire regime parameters include fireline intensity (a measure of heat energy
released), fire season (time of year), and fire size (area burned). Similar to fire
interval data, the mean, variation, and statistical distributions of other fire regime
parameters are often of interest. Note that all of these parameters refer to character-
istics of fire itself, as opposed to the ecological effect of fire. The net ecological
impact of fire—fire severity—is a function of several different fire regime param-
eters in an unlimited variety of combinations, and it may not manifest itself in
vegetation or soils until well after a fire. In addition, ecological structure and func-
tion in one ecosystem may be highly sensitive to specific fire regime parameters,
but much less to others (Romme et al. 1998). An ecologically severe fire in chapar-
ral, for example, would be one that occurs soon after a preceding event (i.e., short
fire interval), eliminating many of the native dominant species that require a decade
or two to become sexually mature and contribute seeds to a soil seedbank (Zedler
etal. 1983). An ecologically severe fire in a ponderosa pine forest might be one that
occurs after a long fire-free interval, burning at a higher intensity than the dominant
trees can survive (Agee 1993; Swetnam and Betancourt 1998).

In terms of the area affected, many fire regimes are dominated by the largest
events (e.g., Strauss et al. 1989; Moritz 1997) and are sometimes said to have
“heavy-tailed” fire size distributions (e.g., Malamud et al. 1998). These descriptive
terms have statistical definitions, and their relevance in analysis of power law rela-
tions is discussed later in this chapter. Whether the largest fires are unusual and
severe ecological events, however, depends on the ecosystem in question. Similar
to the fire interval examples previously given, ecological resilience after a large fire
hinges on how well species and communities inhabiting an ecosystem can regener-
ate, reorganize, and persist in the face of fires of varying size. The notion that there
should be some natural range of variation for a fire regime has therefore become
central to the management of fire-prone landscapes (Hessburg et al. 1999a; Landres
etal. 1999; Swetnam et al. 1999). Later in this chapter, we discuss possible origins
of that natural range of variation and why it is intuitive to think in these terms.

3.4 Fire Regime Variation and Resilience

One may aim to define the “native” fire regime of an ecosystem by quantifying
variation in fire characteristics and connectivity of natural landscape states (e.g.,
before modern human activities) over some defined climatic period. This approach
has been the basis of ecosystem management efforts (e.g., Hessburg et al. 1999a;
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Landres et al. 1999) and large government agency projects, such as LANDFIRE
(Schmidt et al. 2002) and the Interior Columbia River Basin Project (Hann et al.
1997). Quantifying native fire regimes for use in forest management is also the
basis for “emulation forestry” (Perera and Buse 2004, and chapters therein). Ideally,
all fire regime parameters described above would be factored into this approach,
because each can be ecologically meaningful. The parameter emphasized most
frequently tends to be fire return interval, which is often assumed to produce an
associated fire intensity. This is a widely held assumption for many fire-prone eco-
systems. However, longer fire free intervals do not always result in higher fire
intensities. Likewise, short fire return intervals do not always result in lower
fire intensities. Examples include ecosystems in which extreme fire weather events
(a top-down influence) can overwhelm constraints that time since the last fire,
recovery pathway, and fuel accumulation might otherwise pose (bottom-up influ-
ences). This tradeoff in controls applies for many chaparral shrublands of southern
California (Moritz 2003) and a variety of coniferous crown fire dominated ecosys-
tems (Turner and Romme 1994). There are also examples of ecosystems in which
rarely burned stands display a decreasing probability of intense fire, such as the
forests of the western Klamath Mountains in California described by Odion et al.
(2004, 2009).

In addition to paying more attention to some parameters than others, use of the
historical range of variation (HRV) in native fire regimes also requires that a par-
ticular period of relevant climate be chosen as a reference (e.g., Landres et al. 1999;
Swetnam et al. 1999). Therefore, one can arrive at different estimates for a given
parameter, simply by considering different periods. For example, restricting the
temporal baseline to the Little Ice Age (~1,400-1,850) could give quite different
estimates than if the Medieval Warm Period (~800-1,300) were included. Several
reference periods, however, can be highly informative about the dynamics and
interplay between the climate, land, and biotic systems, and that is the primary util-
ity of historical ecology.

Rather than being a single snapshot of conditions in space and time, we suggest
that the HRV should represent the broad envelope of realizations that can occur in
a given landscape, considering a particular climate reference period. When the
climate system changes, the envelope of realizations drifts to include new condi-
tions, but is not likely re-invented. This is due to the potent effect of the historical
ecology, which is the system memory; i.e., prior influences can determine, to a
large but incomplete extent, future landscape or ecosystem trajectories, and the
effects can last for centuries (Peterson et al. 1998; Peterson 2002). A thought
experiment for estimating the HRV of any landscape is to consider the range of
conditions that would occur were we able to rewind time in a particular climatic
period a 1,000 times or more, all else being equal (Hessburg et al. 1999a, b; Nonaka
and Spies 2005). In this light, the HRV is an emergent property of landscapes and
ecosystems (Peterson 2002), derived from the same exogenous and endogenous
forcing factors that shape their resilience. Any future range of variation (FRV) is
then a consequence of the prior HRV, plus changes in exogenous and endogenous
forcings, and the resulting range of conditions.
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A related alternative approach is to identify a bounded range of fire regime
variation, regardless of what the past has demonstrated, within which long-term per-
sistence of ecosystem structure and function might be possible. As opposed to a focus
on a central-tendency measure of mean fire return interval, the emphasis here is on
avoiding ecological thresholds. This would seem to be at the heart of fire resilience,
but it presupposes knowledge of the thresholds to avoid, the manner and rate of eco-
system shifting once thresholds are exceeded, and which fire regime parameters are
most ecologically influential (Romme et al. 1998). Such knowledge is seldom avail-
able. Another unknown is whether thresholds themselves shift in a dynamic climatic
future and how species, communities, and processes might respond. So, while con-
ceptually important, a focus on thresholds may offer limited guidance (e.g., only for
certain species) until much more is learned about ecosystem dynamics in general.

In the face of climatic change, discussion has also emerged about reinforcing
ecological resilience (Millar et al. 2007; Moritz and Stephens 2008), as opposed to
recreating or restoring more natural disturbance regimes. This is largely due to
uncertainty in whether the last few centuries can indicate how ecosystems will
respond to climates of future decades and the fire regimes that may accompany
them. Even so, it is not time to toss away the historical range of variation concept
or historical ecology. Understanding the mechanisms that have to date controlled
landscape resilience is of central importance, and a marriage of the aforementioned
ideas seems warranted.

3.5 Fences and Corridors

Landscape resilience in stochastic environments must involve a variety of species
and processes at different scales, some of which are redundant and others that are
overlapping, such that reorganization and persistence of ecological function are
possible after disturbances (Peterson et al. 1998). In the case of fire, there must also
be mechanisms that generate “fences and corridors” on the landscape—the patchi-
ness of conditions that retard or facilitate progress of combustion—that fire has to
negotiate at any given time. We propose that fire’s fences and corridors, both meta-
phorically and in reality, are a key to landscape resilience.

In a completely homogeneous (and hypothetical) landscape, an extreme situa-
tion would be that all biomass burns every year, and at all scales, assuming the
infrequent ignition at some locations. For all but a few species, this lack of fences
and corridors for fire would clearly be intolerable to their persistence. It is heterogeneity
across the landscape that allows for patchiness in space and time, for vegetation as
well as fire, and thus persistence of diverse ecosystems. Even after very large and
stand-replacing fires like those of Yellowstone in 1988, heterogeneity at the land-
scape scale is seen as key to resilience and regeneration (Schoennagel et al. 2008).
Landscape heterogeneity, variation in fire regimes, and patchiness in fire effects all
contribute to landscape pattern complexity and different types of refugia for post-
fire regeneration.
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Areas that are less likely to burn (fences) and more flammable swaths of
landscape (corridors) influence fire patterns and are due to both biotic and abiotic
factors. Some landscape patterns that either constrain or facilitate the spread of fire
will be relatively static, while others will change with the seasons, and with time
since the last fire. Certain climatic trends (e.g., protracted drought) and extreme fire
weather episodes (e.g., hot, dry, and strong winds) can also temporarily reduce
constraint on fire spread across the landscape. Over long enough time scales, feed-
backs that occur between vegetation and fire eventually lead to vegetation patterns
that are tolerant of — and often adapted to — the fire regime that exists there. Since
these feedbacks are partially responsible for the frequencies and types of fires that
are characteristic of a given region, they also reinforce the network of fences and
corridors in a given ecosystem.

It seems self-evident that landscape heterogeneity should affect the rates and
patterns of biomass consumption by fire. But does this heterogeneity have inherent
structure? Is there any reason to suspect that the size distributions of fires should
somehow be similar across ecosystems that have different inherent rates of primary
productivity or types of topographic complexity? If so, this would imply that the
ensemble of fences and corridors characteristic of one ecosystem can produce fire
patterns that are somehow comparable to those from another ecosystem.

3.6 Fire Size Distributions and Power Laws

Theory and observation hold that certain systems exhibit self-organizing properties
(Turcotte 1999). Under a broad range of conditions, event size distributions of land-
slides, earthquakes, floods, and some argue, forest fires exhibit this behavior (e.g.,
Malamud et al. 1998; Turcotte and Malamud 2004). Event-size distributions are
described using a power-law relation (Pareto I distribution), which implies scale-
invariance of event frequency-size distributions, and system self-reinforcement.

Power laws have been found in many fire size distributions (e.g., Malamud et al.
1998, 2004; Song et al. 2001; Carlson and Doyle 2002; Reed and McKelvey 2002;
Moritz et al. 2005; Boer et al. 2008), although there is substantial disagreement
about what this shared characteristic signifies. A distribution may include very
large and unlikely events—the signature of being “heavy-tailed”—but this does not
necessarily mean it displays a power law relation. Specifically, a fire size distribution
is said to fit a power law relation with slope « if the probability P of a fire of size
(1) is given by:

P(y=1" (3.1

Using a cumulative form of the data (e.g. rank-ordered by size, or the cumulative
distribution function, CDF) avoids having to choose bin widths and other potentially
subjective decisions related to model fitting (Malamud et al. 1998). A constant must
be added to Eq. 3.1 to normalize units of P such that values range from 0 to 1 in
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the cumulative probability distribution. Plots of data are typically shown after
log-log transforming both axes, so that the slope « provides a linear fit to the data.
Moreover, a distribution of fire sizes may be heavy-tailed and not be purely power
law in a log-log plot, if the probability does not decrease in a linear fashion as fire
size increases over the entire range of the distribution. As we will show later, sev-
eral closely related statistical distributions have heavy tails and do not show a linear
fit at either end of the CDF, yet they display robust power law behavior across a
middle range of fire sizes. In the simplest form, purely power law relations are
synonymous with the single parameter Pareto I (P1) model (Newman 2005).

Because fire size distributions have exhibited power-law behavior, despite very
different geographic locations and vegetation types, some have seen this as evi-
dence of a common mechanism, and of self-organization (e.g., Malamud et al.
1998, 2004; Ricotta et al. 1999; Song et al. 2001). Observation of power law char-
acteristics over a broad range of spatial scales has led to descriptions of these rela-
tions as scale-invariant; that is, relations apparently exist regardless of the scale of
observation.

3.7 Theories on the Origin of Power Laws

One body of theory, called self-organized criticality (SOC), argues that such system
behavior is a function of purely endogenous controls (Bak 1996; Turcotte 1999).
This has been shown, for example, in simple sand pile and forest fire simulation
models, which exhibit scale-invariance of event frequency-size distributions and
apparent system self-reinforcement. Criticality is said to be driven by distinct
events (e.g., landslides, fires, earthquakes). Above a “critical” threshold, rates of
endogenous processes produce cascades of events and a range of event sizes fitting
a power law (Pl) distribution (Turcotte 1999; Turcotte and Malamud 2004;
Malamud and Turcotte 2006).

When one examines the simulation logic behind the SOC fire model, it is clear
that these experiments must reveal chiefly endogenous controls, due to the simula-
tion approach and the modeling rules driving critical events (e.g., fuel regrowth
rates). At the other end of the spectrum, one can imagine a system in which
event-size distributions are completely driven by exogenous factors. In the case of
wildfires, for example, Boer et al. (2008) have argued that the frequency of wind
events is the sole structuring mechanism of several fire size distributions they
examined. While their comparison of wind severity distributions and fire size dis-
tributions is compelling, the analysis itself required the specification of a
vegetation-related parameter — an endogenous factor — to match the power law
exponents of wind and fire events.

Given the many interactions across different scales that ultimately produce a fire
regime (Fig. 3.1), it is almost inconceivable that a full range of fire sizes could be
controlled by a single exogenous or endogenous factor. Indeed, Reed and McKelvey
(2002) have shown that fire size distributions in different regions fit power laws
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under certain circumstances and that multiple influences should be involved.
Across a range of fire sizes, the importance of factors driving fire spread is approxi-
mately equal to that of factors causing fires to go out (i.e., mathematically, a
balanced extinguishment : growth ratio).

The findings of Reed and McKelvey (2002) imply a type of meta-stability,
which may have profound implications if generally true. First, they confirm that
both fences (extinguishment) and corridors (growth) are involved in structuring fire
size distributions, implying a variety of endogenous and exogenous factors at play.
Furthermore, this suggests an ongoing tradeoff in the influence of constraints vs.
drivers of fire spread, from which we should actually expect power law distribu-
tions of fire sizes to emerge. Marked deviations from a power law distribution could
thus indicate ecosystems in which forces facilitating the process of combustion are
consistently overwhelming those constraining it (or vice versa). Such a skewed
dynamic might reflect ecosystems going through a major transition (e.g., due to
climate change) or the possibly loss of inherent resilience mechanisms. Although it
is not obvious what the power law slope should be for a robust and functioning
ecosystem, nor over how many orders of magnitude this should be observed, the
findings of Reed and McKelvey (2002) suggest the importance of structured net-
works of fences and corridors on fire-prone landscapes, as well as an expectation
for power law distributions in fire sizes.

The idea that there are multiple inherent constraints on fire size and that ecosys-
tems become somewhat “tuned” to the local fire regime is central to the concept of
Highly Optimized Tolerance (HOT) in fire-prone ecosystems (Carlson and Doyle
2002; Moritz et al. 2005). HOT also provides an explanation for the slopes of
observed power laws. HOT is a conceptual framework for studying organization
and structure in complex systems, and the clearest examples come from biology
and engineering, where adaptation and control theory have direct application
(Carlson and Doyle 1999, 2000; Doyle and Carlson 2000; Zhou and Carlson 2000;
Robert et al. 2001; Zhou et al. 2002). The HOT framework is based on the assump-
tion that complex systems of interacting components must be robust to environmental
variation within some characteristic range. Otherwise complex systems would not
be able to persist and function in fluctuating and uncertain environments. Being
more finely tuned to a narrow spectrum of conditions — even if increasing perfor-
mance or efficiency under these conditions — will ultimately make a system more
susceptible to failure in circumstances outside the narrow range of variation. This
tradeoff is at the heart of what it means to be “robust yet fragile” in the HOT frame-
work (Carlson and Doyle 2002), and it may offer substantial insight into landscape
resilience. Notably, there are also direct parallels between the concept of HRV in
fire regimes and the degree of environmental variation to which complex systems
must be resilient.

In addition to providing theory for how tradeoffs and feedbacks operate in
complex systems, HOT also employs an analytical framework for optimizing these
tradeoffs under uncertainty, and solutions relate directly to the dimensionality of the
problem (Carlson and Doyle 2002). In the case of fire and a managed forest, a goal
might be to arrange barriers to fire spread among forest stands such that one
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Fig. 3.2 Fire size statistics for a variety of fire datasets The lower curves include HRV fire size
data for chaparral-dominated portions of Los Padres National Forest (LPNF) as well as for a
simulation model (HFire) and the analytical model proposed by HOT (PLR). The vertical axis is
the rank of the event size, while the horizontal axis is in km?. The upper set of curves shows these
datasets, plus 4 additional fire size catalogs from different regions of the world, rescaled to show
their power law fit of slope —1/2 (i.e., exponent o = .5) over several orders of magnitude (Reprinted
from Moritz et al. 2005)

minimizes the range of fire sizes observed in the system. Using linear (i.e.,
1-dimensional) barriers, the analytical HOT solution to this problem leads to a size
distribution of fires (~2-dimensional) that follows a power law. It has been shown
that several real and modeled fire size datasets approximate a power law with slope
—1/2, or 1 divided by the dimension of the events being minimized (Carlson and
Doyle 2002; Moritz et al. 2005). Figure 3.2 shows a variety of fire datasets that have
this characteristic shape and overall slope of —1/2 in their HRV of fire sizes.

3.8 Example Ecosystems

Although some have argued that power-law behavior should not necessarily be
interpreted as evidence for ecological organization or inherent ecosystem structure
(e.g., Reed and McKelvey 2002; Solow 2005), the consistent shape of many fire
size datasets indicates an apparent “functional form” and is quite compelling.
Furthermore, the power law slope of some of these distributions is that predicted by
HOT, which would suggest a tendency in these systems toward minimizing the size
range of disturbances. It is not clear, however, how HOT as a mechanism might
accomplish this. How would tradeoffs in the influence of bottom-up (e.g., topogra-
phy and vegetation) vs. top-down (e.g., fire weather and climate patterns) controls
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consistently generate a specific distribution of fire patterns under different
combinations of environmental conditions? For HOT to apply in fire-prone ecosys-
tems, one would expect consistencies between ensembles of fences and corridors
for fire across ecosystems, as well as feedbacks that could at least partially create
these generic structures.

In the remaining sections of this chapter, we further examine the origin, controls,
and methods for identifying power law distributions in fire size data. A first exam-
ple focuses on a crown-fire-adapted chaparral ecosystem, where fire severity essen-
tially functions as a constant across all fire event sizes. In this example, we
demonstrate application of HOT as a theoretical framework, which leads into sev-
eral questions about fitting statistical distributions to fire size data and how to
interpret the results. This is followed by a second example analyzing a variety of
landscapes, including surface fire, crown fire, and mixed surface and crown-fire-
adapted ecosystems, where fire-severity patterns vary considerably. The importance
of rigorous statistical distribution fitting methods is also emphasized, as well as
more mechanistic relations to topographic and physiographic controls on fire size
distributions.

3.9 Fire Size Distributions in Chaparral Ecosystems

Our goal here is to demonstrate application of HOT to fire datasets to see how well
they do or do not adhere to the distribution of fire sizes predicted by this frame-
work. In particular, we aim to contrast regions that have varying degrees of similar-
ity in fire regime controls, to determine if adjacent regions with different top-down
influences still hold to HOT predictions.

Many fire size datasets show evidence of power law behavior over some meso-
scale range (e.g., Fig. 3.2), with a “cutoff” at the upper event sizes (Burroughs and
Tebbens 2001). A steepening of the slope in the largest fire-size range may corre-
spond to some upper limit to the growth of fires in the study domain. Such an upper
truncation could be caused by large fires stopping when they eventually reach land-
scape boundaries, such as adjacent oceans or deserts, ridgetops, or catchment
boundaries. The upper limit could also be dictated by the duration of fire weather
episodes (e.g., hot, dry, and strong wind events that typically last less than a week),
which would constrain the final size of the largest events. A steepening of slope in
the heavy tails of these distributions is therefore not a contradiction to HOT predic-
tions; on the contrary, it is indicative of the scale of spatial controls operating in the
creation of the largest patches.

One issue worth mentioning here is the choice of study domain size: How do we
identify the most appropriate scale at which this type of analysis is to be performed?
One could compile fire size data from a very large study area, which would contain
many different ecosystems with quite different fire regimes. In that case, we might
not expect evidence of a clear cutoff in the large fire size range, since many different
upper limit boundaries are being mixed together in the dataset. Mixtures of fire
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regimes with different large event cutoffs could also lead to steeper power-law
slopes over what would otherwise constitute the meso-scale range of the distribution
(Doyle and Carlson 2000). Identifying the spatial limits of a region with a roughly
homogeneous fire regime is thus an important and under-explored area of study.

In the smaller fire size range (the left tail of the fire size distribution), a shallower
slope and the opposite tendency is often observed—i.e., relatively large increases
in size between the probability of one fire and the next largest—up to a meso-scale
range exhibiting power law behavior (e.g., see Fig. 3.2). One explanation for this
flattening of slope could be that many of the events below the lower cutoff size are
unrecorded, undetected, or undetectable, and their inclusion would steepen this
portion of the distribution. Another explanation is that the interaction of factors
driving and/or constraining the spread of smaller fires is basically different than that
occurring across the meso-scale range displaying power law behavior, leading to a
differing slope.

The analytical solution to the HOT model that minimizes average fire sizes (/)
has the following cumulative form (referred to as the PLR or probability-loss-
resource model, Moritz et al. (2005) and references therein), after including both
the small (C) and large (L) event cutoffs:

P()~(C+Ly*—(C+L)" (3.2)

Similar to Eq. 3.1 above, a constant is applied to the right-hand side of Eq. 3.2 to
normalize units of probability P. The constant, the truncation parameters for the
cutoffs, and the exponent can be chosen through an objective fitting algorithm (e.g.,
maximum likelihood), or values may be selected based on other criteria (e.g., small-
est and largest events in record, hypothesized slope). Regardless of the slope or the
mechanism in question, this lower- and upper-truncated power law function pro-
vides a simple tool for examining fire size data and the range over which power law
behavior applies. In this example, we are not objectively fitting algorithms to deter-
mine parameter values; instead, we specify the cutoffs from the data themselves.

3.9.1 Exposed vs. Sheltered from Extreme Fire Weather

So far we have considered the meso-scale domain of fire regime controls to be that
across which fire sizes display a power-law distribution, presumably structured by
various feedbacks and forcing factors. If there are specific ensembles of fences and
corridors characteristic of particular fire regimes — our hypothesized signature of
landscape resilience — it is not yet obvious how broad-scale differences in top-down
controls might alter fire size distributions from the “functional form” with power
law slope of —1/2 described above.

One of the datasets examined in Moritz et al. (2005) and shown in Fig. 3.2 is for
the combined chaparral-dominated shrublands of Los Padres National Forest
(LPNF) in central coastal California. In analyzing the degree to which time since
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the last fire constrains subsequent burning probabilities, it has been shown that
most shrublands of the region do not show a strong relationship between the age of
fuels and the hazard of burning (Moritz 2003; Moritz et al. 2004). This is largely
because these regions are routinely exposed to seasonal drought and Santa Ana
wind episodes, which can drive fires through all age classes of vegetation. There is
one region of LPNF, however, that is sheltered from Santa Ana winds and actually
shows a moderate degree of age dependence in burning probabilities. Although the
region near the town of Santa Barbara is subject to highly localized fire weather
events known as “sundowner winds,” the alignment of local mountain ranges
appears to shelter the region from the more synoptic-scale Santa Ana winds that
case massive fires in other parts of California (Moritz 2003; Moritz et al. 2004).

Disaggregating the fire data for LPNF into the Santa Barbara region and the
adjacent Ventura region, we see in Fig. 3.3 that both distributions display quite
similar shapes and hold closely to HOT predictions. These two regions vary mark-
edly, however, in the amount of area burned in very large fires. The ten largest
events, for example, comprise a total of ~95,000 and 213,000 ha burned in the Santa
Barbara and Ventura regions, respectively (encircled in Fig. 3.3 and plotted in
Fig. 3.4). Notably, the largest ten events account for the vast majority (~95%) of the
difference in area burned by all fires shown for these regions.

Despite striking differences in conditions under which most of the area burns,
the adjacent regions shown in Fig. 3.3 both appear to be good fits to a power law
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Fig. 3.3 Fire size distributions for subregions of Los Padres National Forest. Data includes
fires> 10 ha and since 1950 for Santa Barbara (black circles) and Ventura (red triangles) regions,
with largest 10 events encircled in lower right. The black line shows the HOT prediction of slope
—-1/2 (Eq. 3.2, C=10 and L=100,000)
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Fig. 3.4 Size comparison of 10 largest events for regions within the Los Padres National Forest

with a slope of —1/2. The fire size data for the Santa Barbara region are not as
heavy-tailed as that of the Ventura region, but in a log-log plot, this difference is not
as large a deviation as the total area burned would indicate. The majority of fire
events occurring in the meso-scale range of the fire regime still exhibit a remark-
ably similar form in terms of fire-size distributions. This suggests somewhat similar
types and scales of landscape heterogeneity between the regions examined. In other
words, comparable ensembles of fences and corridors for fire spread may be
encountered for most events in the fire regime of both regions.

3.9.2 Landscape Resilience in Chaparral

For the chaparral-dominated shrublands examined here, the interplay of endogenous
and exogenous controls apparently maintains a specific structure in the fire size
distributions, despite major differences in top-down fire weather types and frequen-
cies. How does this relate to ecological resilience on a fire-prone landscape?

As noted earlier, an ecologically severe fire in chaparral would tend to involve
short fire intervals in a given location. This is because several dominant chaparral
plants have specialized life histories that for their persistence on the landscape
require a seedbank to accumulate locally before the next fire. Thus, frequent fires
can lead to the replacement of some of the native dominants by invasive annual
species (Zedler et al. 1983). In and of themselves, large and intense fires are not
ecologically severe events, as long as they are well separated in time. Maintaining
this separation is at least partly dependent on ignition patterns, since more ignitions
will increase the likelihood that a fire actually occurs under extreme fire weather
conditions and be capable of burning through young and regenerating stands of
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vegetation. As this trend continues, larger and larger portions of the landscape
become type-converted into highly flammable species that can support fire every
year—a positive feedback that is known as the “grass/fire cycle” (D’Antonio and
Vitousek 1992). Landscape resilience can thus be fundamentally altered, leading
eventually to a new alternative state, if system sensitivities are challenged repeat-
edly and ecological thresholds are eventually crossed.

HOT provides a promising conceptual and analytical framework for understand-
ing the ensemble of fences and corridors that structure fire patterns on landscapes
subject to this natural disturbance. Admittedly, however, we have not rigorously
demonstrated that the best-fitting slope for the truncated power law in Fig. 3.3 is
actually —1/2. It is also possible that a different statistical distribution altogether
may be a better fit to the fire size data we examined. Although chaparral ecosystems
appear to have an inherent resiliency against infrequent large events in the tails of
fire size distributions, the tradeoffs between constraints and drivers hypothesized in
HOT have yet to be identified. Steps toward linking fire regimes to various endog-
enous and exogenous factors driving them would therefore include a more statisti-
cally rigorous approach to fitting fire-size data to statistical distributions, and direct
evaluation of relations between endogenous and exogenous factors and the distribu-
tions themselves. We undertake these steps below.

3.10 Fire Size Distributions in Ecoregions of California

Much of the discussion of landscape and ecosystem resilience to date has been
descriptive and theoretical in nature. Recently, however, several researchers have
begun to take quantitative methods from laboratory simulation experiments and
apply them to natural systems, as in the application of the HOT model to California
chaparral just described. This is important on several levels, since it allows observa-
tion of natural systems that may be under purely endogenous (syn. fine scale, bot-
tom-up), purely exogenous (syn. broad scale, top-down), or mixed controls (syn.
meso-scale). Evidence for power-law relations among wildfire events has largely
relied on the log-linear relationship of the frequency-size distributions of fires.
Power laws have been suggested with satisfactory fits of ordinary least squares
linear regression to log-log transformed, cumulative (CDF) or non-cumulative fre-
quency-size distributions (Malamud et al. 1998). Distributions tend to be described
using the one-parameter Pareto I distribution introduced earlier or some variation
on it (e.g., the truncated form in Eq. 3.2). However, the intricacies of demonstrating
a good power-law fit in the first place have received relatively little attention.

The underlying goals of this analysis were to objectively evaluate evidence for
(1) power law behavior in the event size distributions of wildfires in California, and
(2) potential top-down (exogenous) and bottom-up (endogenous) controls over the
structure of these distributions. In ecological systems, we suspect that interactions
among constraining and contextual influences (sensu Wu and Loucks 1995) may
offer a fuller explanation for what drives system structure. We therefore attempt
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here to test for different forcing factors in a variety of fire-prone ecosystems, at the
observation scale of ecoregions, for the State of California. Our objective was to
provide quantitative evidence of both endogenous and exogenous forms of spatial
control in natural systems, while also distinguishing their control domains.

We used an atlas of recorded fire event sizes in California for the period 1900—
2007. Because fire records were spotty for the first half of the 20th century, we
pared the atlas down to the period 1950-2007 to avoid the greatest potential bias in
recording event-size distributions. We also note the likely incompleteness of the
dataset for wildfires less than 40 ha occurring in forest or 120 ha in grass or shru-
bland habitats. These are threshold sizes when a fire start is considered a large
wildfire incident, from a suppression standpoint. We assumed that most so-called
large wildfire incidents were recorded, but that record-keeping of the smaller events
was likely uneven due to their lesser operational importance.

An on-line geodatabase for the Bailey nested “ecoregions” was acquired (Bailey
1995, http://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-united-states/),
including spatial layers for the division, province, and section levels. We used the
multi-level regionalization to determine whether the biogeoclimatic setting of the
fires explained differences in event-size distributions, and at which scales of obser-
vation distributions showed the highest goodness-of-fit. Where ecoregions at one
scale minimized variance in event-size distribution when compared with other
scales of observation, this would be quantitative evidence of the approximate scale
of top-down spatial control on event size distributions. To accomplish this, we
stratified the California fire event atlas for the period 1950-2007 by the Bailey divi-
sion, province, and section strata (Fig. 3.5). We then submitted the stratified fire-
size distributions to the set of distribution fitting and goodness-of-fit techniques.

3.10.1 Distribution Fitting

Our first objective was to fit the HOT model to fire event sizes within Bailey’s
nested divisions, provinces, or sections across California (Fig. 3.5). We began by
fitting the model using the constant slope of —0.5 (hereafter, the HOT,, model), and
then by using maximum likelihood estimation (MLE, Nash 1990) to find the best
slope of the PLR model for the data (hereafter, the HOT,, . model). As described
earlier, the dimensionality of the HOT2D model arises from the notion that fire event
size increases as a function of a 2-dimensional spreading fire front with 1-dimen-
sional perimeters of active fire spread or extinguishment. In essence, fire spread is
constrained by polygons of fuel/non-fuel conditions, topography, and fire suppres-
sion (e.g., fences and corridors), the strength of which is moderated by climate and
fire weather events. For each instance above (HOT,, and HOT,,, ), fire size distri-
butions were sequentially left-censored to find the range of patch sizes that best fit
the distribution of the PLR models. We assessed PLR model goodness-of-fit (GOF)
to the data using a bootstrapped version of the one-sample Kolmogrov-Smirnov
(K-S) test through 2,500 iterations (Clauset et al. 2009). Acceptable model GOF
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4— Mediterranean Division \
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Fig. 3.5 Bailey’s (1995) ecoregions within California. The analysis used all three levels of
the classification: divisions (single letters in caption), regions (letter + number), and sections
(letter + number+ lower-case letter)
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was indicated by p>0.10, which indicates no significant difference between the
data and the respective PLR model.

We also examined a variety of additional statistical distributions. Distribution fit-
ting techniques in power law studies generally come in two flavors: (1) fitting ordi-
nary least squares regressions to the log-log transform of either the empirical
cumulative or non-cumulative frequency-size distributions (CDF), and (2) fitting the
1-parameter Pareto I distribution (P-I) using MLE, and assessing the fit of this model
to the data using one of a variety of goodness-of-fit (GOF) tests (e.g., Chi-square,
Kolmogrov-Smirnov tests). Several recent articles have convincingly argued for the
latter method, because it is most appropriate for estimating the parameters of a Pareto
model and its goodness-of-fit to data (White et al. 2008; Clauset et al. 2009).

We evaluated potential power-law behavior in three ways: (1) by fitting a variety of
2-, 3-, and 4-parameter complex Pareto models with known power law behavior, (2)
directly fitting Pareto I (P1) and truncated Pareto I (TP1) models to fire-size distribu-
tions following the methods of Clauset et al. (2009), and (3) fitting broken-stick regres-
sion models to the inverse of the empirical CDF (Boer et al. 2008). Each of these
methods has advantages and disadvantages (Table 3.1), and we used them to objectively
evaluate the presence and scale(s) of power-law behavior in fire size distributions.

In the first assessment, we objectively fit a closely related family of Pareto and
Generalized Beta II models to the inverse of log-log transformed empirical CDFs of
fire event sizes using MLE. The distributions within the Generalized Beta II
(GBII=Feller-Pareto, Arnold 1983) and Pareto families are 2—4 parameter models,
including the Lomax (2P; = Pareto II), Inverse Lomax (2P), Fisk (2P; = Pareto III),
Paralogistic (2P), Inverse Paralogistic (2P), Singh-Maddala (3P; = Pareto 1V), and
Dagum (3P) distributions. These models all have in common implied presence of
power-law behavior in the middle and/or right tail of the distribution (Clark et al.
1999). MLE was performed using vector generalized linear models within the
VGAM package in R version 2.9.1 (Yee 2006, 2008). To select the best model, we
favored model parsimony and the minimum K-S test statistic. In the second assess-
ment, we employed the methods of Clauset et al. (2009) to identify the lower bound-
ary of the fire event sizes (x.min), above which power-law behavior most likely
occurred. The third assessment involved fitting 1- or 2-break broken-stick regression
models to the inverse CDFs to identify whether more than one scaling region was
possible, as outlined by Boer et al. (2008). Scaling regions could indicate unique
process domains and degrees of influence on fire event size. We assessed model
GOF for the first two methods as described above under PLR distribution fitting.

3.10.2 Evaluating Top-down and Bottom-up Controls

For each of the three Bailey ecoregion levels, we evaluated the effect of top-down
forcing by quantitatively comparing the fire event-size distributions among ecore-
gions. We used pairwise (two sample) K-S tests to determine the best stratification
level for the data.
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Table 3.1 Advantages and disadvantages of methods for determining the adequacy of power law
model goodness-of-fit to fire event size distributions

Method

Advantages

Disadvantages

Fitting complex Pareto
and GB II models
with suspected
power law tails
to the entire
distribution of patch-
sizes (see Clark et al.
1999)

Fitting a 1-parameter
Pareto I (power law)
model to the right-tail
of the distribution (see
Clauset et al. 2009)

Can model the
distribution of patch-
sizes over entire range
of observation using
maximum-likelihood
estimation (MLE)

Can implement modified
goodness-of-fit (GOF)
tests to determine
adequacy of model
fits to the observed
distributions

Can compare model fit and
parameter estimates
within and among
empirical distributions

Fits power law model using
MLE

Adequacy of fit can be
assessed using modified
GOF tests

Objectively determines
scaling region in the
right tail based on the
Kolmogrov-Smironov
(K-S) test statistic; most
power law behavior in
systems is known to
exist in the right-tail
(Clauset et al. 2009)

Fitting a 1- or 2- parameter Method is based on MLE

broken-stick model to

identify scaling regions

(see Boer et al. 2008)

and not on ordinary
least-squares regression

Can control the parameter
number (breakpoints) in
the model

Can objectively determine
lower and upper bounds
on power law behavior,
and identify multiple
scaling regions, where
present

Visually approximates the range
of patch-sizes where power
law behavior occurs

Lack of model fit does not
eliminate the possibility of
power law behavior in the
distributions

Goodness-of-fit is dependent on
the type or class of test used in
analysis (e.g., KS, Chi-square,
Anderson-Darling)

Location and GOF is dependent on
the type of GOF test employed

May miss the presence of a power
law scaling region where model
departures occur at the extreme
end of the right-tail; these
departures may be intuitively
explained as upper physical or
ecological limits on power law
behavior

Cannot identify multiple scaling
regions in the data

GOF tests can be misleading as a
good fit of the model to the data
is not imperative in identifying
scaling regions

GOF tests will generally favor highly
parameterized models

Breaks may/may not be ecologically
meaningful
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To evaluate influence of bottom-up forcing, we evaluated patch size distribu-
tions of simple aspect (N or S) topographies derived from a 90-m digital elevation
model (DEM). We also evaluated slope, curvature, and combined topographies but
settled on aspect because it showed the best GOF when a left truncated Pareto-I
model was fit to the aspect patch size data. Distribution fitting using MLE and GOF
assessment for the topographic features followed the same methods used for the
fire event-size distributions. We directly evaluated the influence of topography on
fire event sizes by again using a pairwise K-S test on all event sizes and aspect
patch sizes greater than the estimated x.min for the best fitting Pareto I model. To
find the region of concordance between the aspect patch and fire event size distri-
butions, we sequentially removed the patches from the right tail until a p>0.10 was
reached.

3.10.3 Characteristics of California Fires

Fire event sizes across California from 1950 to 2007 followed a distinctive pattern
over most of the state, where small- to medium-sized fires were most common, and
large fires >10,000 ha in size were relatively rare events. Fires ranged in size from
1 to 100,000 ha in size.

The greatest numbers of fires recorded were located in the Southern California
Mountain Valley and Coast sections with 0.11 and 0.08 fires km™, respectively.
Vegetation communities in this area are dominated by fire-adapted species, and
physiognomies range from grasslands/shrublands and open hardwood woodlands
in the foothills to ponderosa pine forests in lower-montane settings. Human popula-
tion is also highest in these sections, with high concentration of anthropogenic
ignitions. Fires of southern California are also influenced by Santa Ana (foehn)
winds that have been linked with extreme fire behavior (Moritz 1997).

For most ecoregions, the 2- or 3-parameter GBII and Pareto models adequately
fit the CDFs, based on a bootstrapped version of the K-S GOF test. These distribu-
tions all have in common the likely presence of an embedded power law region,
suggesting that power law behavior is likely found above a certain minimum fire
size. In the left tail of the fire event size distributions, where most of the fire events
occurred (but represented the least part of wildfire affected area), there was
evidence of a distinct change in slope at around 102 ha, for most ecoregions, as
can be seen in the empirical inverse CDF plots in Fig. 3.6. Factors accounting for
this behavior may be: (1) fire reporting, recording, or mapping errors, (2) variable
fire suppression efficacy, and (3) endogenous forcing. It is not possible to determine
from the distributions alone which of these factors had the greatest influence on
event sizes. However, highly dissimilar ecoregions, which vary in the amount of fire
reporting errors and suppression efficacy, each followed this trend, indicating that
endogenous factors may account for the lack of fit of the Pareto I model to the left-
tails of the distributions.
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3.10.4 Selecting an Optimal Ecoregion Scale

When attempting to detect direct evidence for controls on response variables, it is
reasonable to first evaluate various regroupings of the data to observe those that are
ecologically most intuitive and best minimize variance within the data. We used
Bailey’s ecoregion hierarchy to select an appropriate scale of observation for dis-
playing potential top-down controls on fire event size distributions. Results of fit-
ting various distributions to fire event sizes in Bailey’s nested divisions, provinces,
and sections showed that top-down ecoregional controls were best observed at the
section level. At the division level 67% of the pairwise K-S test comparisons
showed significant differences among ecoregions, while at the province and section
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Fig. 3.6 The log-log plots of the empirical inverse cumulative distribution functions (CDFs) for
event-size distributions of wildfires (> 1 ha) within Bailey’s sections in California from 1950-
2007. Black lines represent the empirical inverse CDF for fire patch-sizes. Blue lines represent the
best-fit 1-parameter Pareto I (P/) distribution to the right-tail of the data, orange dashed lines
represent the best truncated P1 fits, and the green and red dashed lines represent the best HOT, |
and HOT,, . fits to the data, respectively. Green triangles represent the break-points for broken-
stick regression models estimated by maximum-likelihood. Shaded areas represent a meso-scale
domain where we theorize that endogenous and exogenous factors jointly influence the distribution

of patch sizes
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levels 79% and 88% of the comparisons were different, respectively. Thus, we
report modeling results summarized to sections only.

3.10.5 Distribution Fits for California Fires

Results from our distribution fitting exercise support those from the earlier analysis
we performed on a small chaparral-dominated region, and they provide evidence of
HOT behavior for wildfires across much of California. Fourteen of 16 (88%)
Bailey’s sections showed support for HOT behavior; i.e., significant fits to the
HOT, or HOT,, , models, for fires larger than ~100 ha (Table 3.2).

Exceptions were the Great Valley and Central California Coast Range sections
(Fig. 3.6), which we take up later.

The HOT,; model fit seven of the 16 ecoregions (44%), based on the boot-
strapped version of the K-S test. Sections located in desert (Mojave), semi-desert
(NW Basin and Range, Mono), or chaparral (Southern California Coast) generally
provided the best examples of the HOT,; model (Table 3.2, Fig. 3.6). The Southern
California Coast section represented the clearest example of a HOT,) model, con-
sistent with our earlier chaparral case study above, and this section includes the
whole of that study area. The group of sections best explained by the HOT,  model
is dominated by fire-prone grassland or shrubland vegetation communities, all of
which naturally have a high-severity or stand-replacement fire regime. Where fire

Table 3.2 Fit of the Pareto 1 (P1), truncated Pareto 1 (TP1), and HOT probability-loss-resource
(PLR) models to the event size distributions of California wildfires>100 ha for the period
1950-2007

Bailey’s (1994) ecosection N P-1 TP1 PLR,,  PLR .,
Northern California Coast 241 0.02 0.90 0.06 0.35
Central California Coast Ranges 270 0.03 0.59 0.05 0.92
Southern California Coast 998 0.49 0.10 0.53 0.64
Great Valley 664 0.59 0.46 0.00 0.04
Northern California Coast Ranges 600 0.60 0.46 0.00 0.89
Northern California Interior Coast Ranges 287 0.07 0.62 0.64 0.49
Klamath Mountains 686 0.24 0.00 0.35 0.01
Southern Cascades 190 0.24 0.21 0.01 0.00
Modoc Plateau 426 0.01 0.60 0.36 0.62
Sierra Nevada Foothills 1,419 0.48 0.66 0.00 0.88
Sierra Nevada 1,616 0.04 0.47 0.03 0.71
Central California Coast Ranges 959 0.46 0.57 0.00 0.02
Southern California Mountains and Valleys 3,450 0.00 0.00 0.00 0.13
Northwestern Basin and Range 142 0.08 0.57 0.33 0.82
Mono 149 0.03 0.22 0.59 0.75
Mojave Desert 92 0.65 0.83 0.28 0.64

Values in bold type face are significant (p>0.10)
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severity functions more or less as a constant, the HOT,; model appears to most
elegantly explain the origin of fire-size distributions. Thus, the map of grassland
and shrubland landscapes functions as a mosaic of fuel/non-fuel patches resulting
from prior disturbance and recovery, and event-sizes are driven by the magnitude
and period of the climatic or weather influence during events. Similarly, fire event
size distributions are highly relevant to understanding vegetation and disturbance
patch dynamics, because fire-event and fire-severity patch-size distributions are
more or less equivalent. Where fire severity is more variable, we theorize that fire
event sizes are much less important. Rather, fire severity patch size distributions are
likely the key.

The Klamath Section, which also fit the HOT,  model, was a notable exception.
The Klamath comprises roughly equal parts of rangeland and forest physiognomies
(Bailey 1995). We hypothesize that the fire regime and forest type complexity of
the Klamath should be further subdivided to better understand top-down and bot-
tom-up controls on fire event-size distributions. The same is likely true for the
Modoc Plateau Section (Table 3.2, Fig. 3.6).

Allowing for variable slopes, the HOT, . model fit 88% of fire event-size dis-
tributions at the section level, despite large ecological and geographical variation.
Slope values for most sections were steeper than that of the HOT,; model with the
exception of the Klamath, Mono and Southern California Coast sections (Fig. 3.6).
Where slopes are steeper than —0.5, the dimensionality of wildfires may be lower
than that predicted by the HOT,, model (Carlson and Doyle 1999). In California,
this occurs in sections where relatively higher spatial complexity of topography,
forest and rangeland types, structural conditions, climatic influences, and fire
regimes is apparent. Falk et al. (2007) hypothesize that these relations might be
expected. For example, they suggest that climatic anomalies that magnify weather
extremes or lengthen fire seasons may lead to more variability in the distribution of
fire sizes and larger maximums, which would tend to flatten the slope of the fire
size distribution. In contrast, highly dissected topographies would tend to retard fire
growth under non-extreme fire weather conditions, thereby reducing the largest fire
sizes, which would tend to steepen the slope of the fire size distribution. (Carlson
and Doyle 1999).

Doyle and Carlson (2000) posit that “landscapes which naturally break forests
into regions of fractal dimension lower than 2 [slope is < —0.50] would have steeper
[sloped] power laws by definition.” With few exceptions, our results confirm that
observation. A simple one-dimensional model, such as a network or flow route of
linear features, would show a slope of around 1. In montane forests, winds during
fires tend to be directional and wind flow is routed and concentrated by topography.
Perhaps HOT model slopes tending towards 1 reflect a primary influence of fire
flow routing in event size distribution. An important area of near-term research is
unraveling the ecological meaning of differing slope values and their causal
connections.

Several additional models (i.e., P1 and TP1) fit to all but one of the Bailey’s
sections; the Southern Mountain Valley Section. Similar to the HOT model GOF,
these models fit best to fires larger than ~100 ha (Table 3.2). The P1 model fit best
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to the Great Valley (A3a), Mojave (D1a), Southern Cascades (B1d), Sierra Foothills
(B1f), and Central Coast Ranges (B2a). For most other sections, the largest event
sizes in these sections were smaller than those predicted by a pure power-law fit.
This effect may be caused by physical constraint on the size distribution of aspect
patches (and perhaps curvature and slope patches) imposed by geomorphic pro-
cesses of an ecoregion. The best fitting section to the P1 model was the Great
Valley. In the Great Valley, topography is flat to rolling, climatic influence is rela-
tively more constant, and the land is highly parceled, owing to spatially continuous
development and agriculture. As a consequence, we observe mostly anthropogenic
and endogenous controls on wildfire spread. The Klamath and Southern California
Coast sections shared a significant fit of the P1 to only the largest fire sizes, indicat-
ing that the largest fires in these sections might be under different controls than
smaller fires.

3.11 The Meso-Scale Process Domain and a Role
for Topography

We theorized that fire event sizes are controlled by different processes operating at
different spatial scales (Fig. 3.9). For example, at fine scales (<10? ha), endogenous
factors such as the spatial patterns of micro-topography and environment, stand
dynamics and successional processes, and endemic insect and pathogen distur-
bances may affect fire size, regardless of human influence. At broad scales
(>10* ha), exogenous factors may contribute to large and very large fire sizes,
regardless of human influence (Fig. 3.9). Broad-scale controls might include cli-
matic events such as multi-year droughts, multi-decadal climatic oscillations such
as the PDO and ENSO (Heyerdahl et al. 2002; Hessl et al. 2004; Schoennagel et al.
2005), and gradient or foehn winds (Moritz 1997). At meso-scales (~10? — 10* ha),
however, fire-event sizes are influenced by a mixture of both endogenous and exog-
enous controlling factors (Turner 1989), and human influence can be most effective
in influencing the distribution of medium to large fire sizes (Fig. 3.9).

We used broken-stick regression analysis to identify a possible meso-scale
domain where exogenous and endogenous influences were both at work. Evidence
from this analysis confirmed a meso-scale process domain likely exists between
about 10? and 10* ha. These results, combined with the distribution modeling, indicate
the presence of different scaling regions and process domains (fine, meso, and
broad). Different forcings on fire-size distributions act independently (within their
domain) and interact (on the edges of their domain) to control the distribution of
wildfire event sizes.

Power-law behavior in a variety of earth systems has been studied and described
extensively (Hergarten 2002, and references therein). Results from our analysis of
topographies in California sections showed strong power law behavior in the distri-
bution of north and south (N/S) aspect polygons. The left-censoring technique,
which finds the minimum patch-size where the power law model best fits the data,
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Fig. 3.7 The log-log plots of the empirical inverse cumulative distribution functions for size
distributions of aspect (N/S) patches (> 1 ha) within Bailey’s sections in California. Black lines
represent the aspect patch-size data; blue lines represent the best-fitting 1-parameter Pareto I (P/1)
distribution to the right-tail of the data from the estimated lower cut-off (vertical dotted line).
Green triangles represent the break-points for broken-stick regression models (BSRS) estimated
by maximum-likelihood. Shaded areas represent the meso-scale domain as predicted by BSRs.
P-values>0.10 indicate acceptable fits of the data to the P1 distribution; S-values indicate the
slope of the best fitting P1 model

consistently identified power-law behavior for the distribution of patches >10” ha
(Fig. 3.7). The scaling parameters for the Pareto I distributions of aspect patch sizes
were generally slightly steeper than for the fire-size distributions, averaging ~ 1.85—
1.9, depending on the Bailey’s level.

Because the topographic and fire event-size patches were analyzed on equal
logarithmic scales, they were directly comparable, and these results indicated that
simple aspect N/S likely provides bottom-up controls on fire-size distributions
(Fig. 3.8). In Fig. 3.8, for the meso-scale domains of the aspect and fire event size
distributions shown, there was no significant difference between the two models,
suggesting that meso-scale topographies may be entraining event size distributions
in the same size range. We also evaluated slope and curvature topographies and
combinations, and these showed significant control relations, but aspect produced
the strongest apparent bottom-up spatial control.
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Fig. 3.8 The log-log plots of the statistical concordance between the empirical inverse cumulative
distribution functions (CDF) of aspect patch (N/S, >1 ha) and fire event size distributions within
Bailey’s sections in California. Over the regions shown, there is no significant difference between
the two models (two-samples K-S test). The value of n.cens is the number of observations cen-

sored from the original value of N (see Fig. 3.6) for a given section

Results from our analysis suggest that both top-down geoclimatic and bottom-up
topographic factors interact to control the distribution of fire event sizes in
California and constrain the scales at which power law behavior is observed
(Fig. 3.9). Topographic features such as aspect and slope (results not shown) have
been shown to produce a myriad of effects on ecological patterns and processes at
fine to meso-scales. Our results suggest that aspect may play an important role in
controlling fire size distributions. This landscape effect of topography was observed
over a large and diverse California landscape as seen by the similarities in fire-size
distributions of sections. While these distributions shared features in common, there
were also differences in fire size distributions among ecoregions (Fig. 3.6), in the
best-fitting models, and in model parameters. Furthermore, individual section mod-
els provided consistently better P1 and TP1 fits than did the pooled sections model.
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Fig. 3.9 Conceptual diagram of the spatial controls on fire event sizes. In the /eft tail, endogenous
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These results suggest that top-down biophysical controls also have distinguishable
effects on fire sizes.

3.12 From Whence Come the Distributions?

All of the previously described frameworks contribute to our understanding of
landscape resilience, but none fully explains causal mechanisms behind apparently
self-organized structure in California wildfires. In this work, we have used alternative
ways of looking at California wildfire systems, in the same manner that one might
look at some aspect of the world through different colored eye glasses. From what
we have discovered thus far, we propose that landscape resilience in these ecosys-
tems stems from the ongoing re-structuring of vegetation conditions by wildfires,
controlled spatially and temporally from above by broad gradients of regional and
subregional geology, geomorphology, and climate influence. From below, the
underlying template of topography appears to cause relatively strong entrainment.
Fires themselves are also advanced or retarded by the timing, severity, and spatial
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extent of prior disturbances, and their subsequent recovery regime. The net result is
an ever-shifting template of fences and corridors, a structured heterogeneity of
biotic and abiotic conditions that gives rise to the future mosaic of disturbed and
recovering patches. This structured heterogeneity is the resistance surface that
advances or retards the penetration of processes, especially disturbance processes,
at all points in space or time.

Our observations are consistent with that proposed by Peterson (2002), who sug-
gested that systems have an “ecological memory,” whereby past disturbance and
recovery create a patchwork mosaic of resistances to penetration by processes.
Peterson found that ecological memory was a significant driver of the structure and
organization in modeled systems. We provide evidence here for a structure to that
ecological memory in natural ecosystems. Specifically, we find that controls on
disturbance spread have identifiable scale-dependent domains, with endogenous
factors likely dominating at finer scales (fires <10? ha) and exogenous controls
dominating at broad scales (fires >10* ha).

Organization in natural systems is not static, but instead varies within a broad
envelope of potential conditions, a function of the timing, severity, extent, and type
of previous disturbances, the topographic setting, and climatic context. During rela-
tively constant climatic conditions, this envelope develops the appearance of sta-
tionarity, while not being truly stationary. Under various climatic forcings, the
envelope shifts as a function of the strength and duration of the climatic shifting.
Nevertheless, within the meso-scale range of fire sizes (~10°~10* ha), tradeoffs
between various factors controlling fire spread — the shifting surface of fences and
corridors that fire must repeatedly negotiate — lead to a relatively predictable power-
law distribution of fire sizes. Topography, in particular, appears to play a previously
under-appreciated role in generating the heterogeneity important to resilience in
many fire-prone ecosystems. Therefore, even as the envelope of potential condi-
tions shifts in a given region, topography remains (more or less) static, partially
mediating climatic shifts and providing a template for ecological memory.

Power law relations are scale-invariant, meaning that the shape of patch-size
distributions of the system in question is constant regardless of the scale of observa-
tion. This is an important relationship in SOC theory, because the mechanisms
behind the organization of these hypothetical systems are solely dependent on the
internal fuel configuration of the system and the frequency of ignitions. This unre-
alistic degree of internal regulation simply cannot apply in real fire-prone ecosys-
tems. Similarly, few fire regimes could be entirely driven by exogenous forcings
(e.g., wind events). In contrast to such one-sided views, HOT theory predicts that
both bottom-up and top-down influences create fire regimes and ecosystems that
are resilient to the degree of environmental variation experienced there. This is
directly analogous to the HRV associated with a given ecosystem, which is com-
monly seen as important to resilience. HOT also predicts scale invariance and
power law slopes of roughly —1/2, a theoretical result of minimizing the spread of
two-dimensional events. Our observations show that scale invariance in natural
systems does indeed occur over the meso-scale region of fire event sizes across
California landscapes.
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Perhaps we should not be at all surprised to find power-law distributions in fire
sizes, as long as there is an approximate balance between fire growth and fire extin-
guishment (Reed and McKelvey 2002). It is conceivable that this will someday be
intrinsically linked to ecosystem metabolism, with fire acting as fast respiration as
biomass accumulates. Regardless, it is remarkable that so many regions in
California have fire regimes that approximate a power-law distribution of fire sizes.
Many of these regions appear to display a somewhat steeper slope than the —1/2
predicted by HOT, which may result from entrainment by the steeper size distribu-
tion of topographic characteristics. Fire in these regions could also be interpreted
as following more of a network flow (i.e., closer to one-dimensional), since most
are mixed-severity systems in which topography more strongly affects the paths of
fires and intensities at which they burn.

We posit that in many fire-prone systems in California, the very large and rare
fires play an important role in resetting the mosaic to different degrees, thereby
affecting future fire spread, succession, and recovery processes. In most Bailey’s
sections the largest 10-15% of fires affected two-thirds to three-quarters of the sec-
tion area. The largest and rarest fires must therefore be an integral part of the
entrainment of future fires. [In forests, we suspect that it is the heterogeneous
mosaic of fire severity patches within the area contributed by the largest fire events
and the large fire event areas themselves that contribute to the entrainment of future
fires.] Because of the inherent heterogeneity embedded across meso-scale land-
scapes, large fires are not necessarily associated with the “unraveling” of ecosys-
tems. When their frequency exceeds that of HRV, however, such increases can
exceed the resilience capacity of the system. Conditions for these rare events are
mediated both externally by climatic factors and internally by the level of contagion
inherent to the system at the time of disturbance. Anthropogenic forces also play a
role: As humans increase the availability of ignitions during the most critical cli-
matic conditions, the frequency of large events can approach levels that are desta-
bilizing and far outside HRV.

3.13 Concluding Thoughts

The foregoing observations have implications for restoring a more naturally resil-
ient fire ecology to fire-prone landscapes. If the meso-scale domain of event sizes
provides an organizational structure for future fire sizes, then intentional human
influences, whether positive or negative, will likely have the greatest impact in that
domain. Large and rare events will occur regardless of human intervention, because
they are under broad-scale spatial controls. Similarly, small events will occur
regardless of human intervention, because they are governed by endemic fine-scale
properties of ecosystems. However, in the middle domain, where endogenous and
exogenous factors interact, humans may be able to rescale disturbance event size
distributions by manipulating the patterns, conditions, and sizes of the patches that
make up the fences and corridors that influence disturbance. For example, during
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typical wildfires in many forests (non-extreme event conditions), the flaming front
is highly responsive to spatial mosaics of canopy and surface fuels (Finney et al.
2007). Conditions conducive to maintaining surface fires in forests typically yield
surface fired patches and low- or mixed-severity effects. Those conducive to crown
fire yield canopy fires and a preponderance of stand replacement. Likewise, root
diseases, dwarf mistletoes, bark beetles, and defoliators are highly host specialized.
Mosaics of differing actual vegetation cover type, stand age, density, size, and
clumpiness represent varying degrees of resistance to spread of these processes.
In the meso-scale range of patch sizes (~ 50 — 5,000 ha), restoration tactics appro-
priate to the natural fire ecology of the ecosystem will likely have the greatest effect
on system meta-stability (Wu and Loucks 1995) and resilience.

It is yet unclear in fire-prone ecosystems exactly how factors other than topog-
raphy might be involved in the production of specific power law fire size distribu-
tions across the meso-scale, although ecologically relevant mechanisms have been
suggested (e.g., Moritz et al. 2005). It is likely that variation in fire severity pat-
terns is really at the heart of landscape resilience, with fire event size distributions
acting as a surrogate measure in most systems. We suggest that ecosystem-wide
heterogeneity in fire effects, as well as landscape resilience that is associated with
them, emerge primarily from patterns and processes operating at the meso-scale
(Fig. 3.9). Linking distributions of fire severity patches to the HRV in fire sizes,
frequencies, seasons, and intensities is an area ripe for a significant amount of new
research.

How realistic are fire growth and fire extinguishment (Reed and McKelvey
2002) in generating power law distributions in fire sizes? It is intuitive that there
should be some inherent limits on the growth and eventual sizes of typical fire
events (Moritz et al. 2005), but how does this occur? In terms of ecosystem energet-
ics, there must be a kind of see-saw balancing act between combustion of biomass
and the primary productivity of a landscape. For a simple landscape in which fire
is the only “consumer” of vegetation (e.g., Bond and van Wilgen 1996; Bond et al.
2005), one might expect rates of burning to roughly equal rates of biomass accu-
mulation, when examined over broad scales of space and time. We already know
that such relationships exist at the global scale, where fire activity shows strong
links to net primary productivity patterns (Krawchuk et al. 2009). We do not yet
understand all of the precise mechanisms behind the generation of fences and cor-
ridors that influence fire’s dance across space and time. Pursuit of these questions
and others should improve our ability to understand and further quantify the elusive
nature of resilience, its variations, and its evolutionary mechanisms.
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Chapter 4
Climate and Spatial Patterns of Wildfire
in North America

Ze’ev Gedalof

4.1 Introduction

Climate interacts with wildfire at a range of spatial and temporal scales. In this
chapter I describe a conceptual model that describes how climate (a top-down con-
trol) interacts with processes of vegetation development and topography (bottom-
up controls) to give rise to characteristic disturbance regimes and observed patterns
of wildfire throughout North America. At the shortest timescales (synoptic to sea-
sonal), climate influences fine fuel moisture, ignition frequency, and rates of wild-
fire spread. At intermediate timescales (annual to interannual), climate affects the
relative abundance and continuity of fine fuels, as well as the abundance and mois-
ture content of coarser fuels. At longer timescales (decadal to centennial) climate
determines the assemblage of species that can survive at a particular location.
Interactions between these species’ characteristics and the influence of climatic
processes on wildfire activity give rise to the characteristic disturbance regime and
vegetation structure at a given location. Large-scale modes of climatic variability
such as the El Nifio — Southern Oscillation and the Pacific Decadal Oscillation
affect patterns in wildfire by influencing the relative frequencies of shorter scale
processes. Because the importance of these processes varies depending on topo-
graphic position and the ecology of the dominant vegetation the effects of these
modes varies both between and within regions. Global climatic change is effec-
tively a centennial to millennial scale process, and so its effects can be understood
as resulting from interactions between the observed patterns of higher frequency
processes, as well as processes of vegetation change whose temporal evolution
exceeds the length of the observational record. Statistical models of future fire that
are based on historical fire climate relations and regionally downscaled climate
forecasts suggest that in most regions of North America wildfire will increase in
frequency over the next several decades. Predictions beyond this interval are probably
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unreliable as vegetation structure and composition will be changing rapidly in
response to changing climatic conditions and fire regimes.

Spatial variability in the structure and composition of vegetation occurs as a
legacy of interacting processes that are biological, geological, geomorphological,
climatic, and anthropogenic in origin. Of the processes that shape ecosystems,
none is more dramatic or more important (at least in temperate regions) than fire.
The behavior of individual fires is largely determined by the nature of the fuels,
weather, and topography that characterize the site of ignition (Johnson 1992; Agee
1993). Of these factors, weather is the most variable over time (Bessie and
Johnson 1995), and is the most poorly understood (e.g., Gedalof et al. 2005).
Because the vast majority of area currently burned by wildfire is caused by rela-
tively few fires that burn under extreme weather conditions (Strauss et al. 1989;
Gedalof et al. 2005), it is important to understand the causes of variability in
extreme fire weather.

The effects of fire weather on fire behavior do not appear to be consistent across
space (Jones and Mann 2004). Rather, weather interacts with other factors to give
rise to the specific fire regime of a given location. These factors can be generally
characterized as being either top-down or bottom-up (Chaps. 1 and 3). Top-down
controls include those that originate outside the ecosystem. Of these climate is the
most important, although anthropogenic influences are locally important. Bottom-up
controls include those that originate inside the ecosystem, such as topography and
vegetation dynamics.

Assessments of the relative contributions of top-down and bottom-up controls
on wildfire are complicated by many interacting factors, including:

* The climatic history of the earth has not been static at any scale of variability,
and will continue to change over the coming decades to centuries (Karl 1985;
Meehl et al. 2005)

* Intensive land use by people, including forestry and road building, and
grazing by sheep and cattle changed forest conditions in many regions
(Madany and West 1983; Belsky and Blumenthal 1997; Heyerdahl et al.
2001)

* Many landscapes may be a legacy of fire use by indigenous peoples, although
the pre-settlement fire regime is not well known in most cases (Brown and
Hebda 2002; Keeley 2002; Williams 2002; Gedalof et al. 2006)

* Records of fire history are generally short, often lack detailed location infor-
mation, and are not easily reconciled (Westerling et al. 2003; Gedalof et al.
2005)

» The effects of fire suppression on area burned are uncertain, and controversial in
many forest types (Keeley et al. 1999; Johnson et al. 2001; Ward et al. 2001;
Bridge et al. 2005).

Despite these challenges, emerging data sets and analytical methods have allowed
important insights into the processes that give rise to spatial patterning in severe
wildfire years at regional scales (10°~10° km?), and a coherent conceptual model is
emerging. The purpose of this chapter is to summarize recent developments in
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understanding the role of top-down controls, and in particular climate, on variability
in area burned by wildfire. Specifically, I summarize the mechanisms by which
top-down controls give rise to widespread severe wildfire years, describe several
important patterns of climatic variability and assess their role in giving rise to
regional patterns of wildfire, and discuss how vegetation cover and other bottom-up
controls modulate the response of a given region to climatic variability to give rise
to landscape-scale responses (10°-10* km?) to these top-down controls. This context
is used to understand how climatic change may affect fire frequency over the next
several decades to centuries.

4.2 Mechanisms of Top-down Control

Variability in the Earth’s climate system represents the most important source
of variability in the fire regime of most regions (e.g. Stahle et al. 2000). Properties
of the climate system that can affect wildfire include temperature, precipitation,
wind speed, relative humidity, and lightning activity. These properties fluctuate
in space and time across many orders of magnitude, ranging, for example, from
a sunfleck that might dry a few square meters for a minute or two, to a mega-
drought that might persist throughout a given region for decades or more
(Schroeder 1969; Strauss et al. 1989; Johnson and Wowchuk 1993). The effects
of these fluctuations are similarly variable, depending on their characteristic scale
and properties of the ecosystem they are incident upon. In the following sections
I summarize the main mechanisms by which climatic variability can affect fire,
focusing on how the scale of the climatic process involved influences the impact
on the fire regime.

4.2.1 Ignition Events

Lightning is the most important natural cause of wildfire ignitions throughout North
America (Morris 1934; Rorig and Ferguson 1999; Malamud et al. 2005). Lightning
is caused by convection within clouds acting to separate positive and negative
charges (Uman 2001; Burrows et al. 2002; van Wagtendonk and Cayan 2008). The
convection that gives rise to these charge differentials is most commonly associated
with unstable air masses associated with differential surface heating, or diurnal
variability in surface temperatures (Uman 2001). Most lightning associated with
electrical storms is contained within the cloud (i.e., occurs as intracloud lightning),
and is not associated with fire ignitions, but a small proportion of lightning occurs
as cloud-to-ground lightning. Surprisingly, most cloud-to-ground lightning strikes
are so brief that while they may cause considerable damage to trees they rarely
generate sufficient heat to ignite fuels (Latham and Williams 2001). However, about
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30% of these strikes are associated with sustained current flows that do generate
sufficient heat to potentially ignite fires. Of particular importance are the approxi-
mately 10% of strikes that are positive in polarity, which much more commonly
sustain the currents needed to ignite fires (Latham and Williams 2001). The causes
of positive-polarity lightning are still unknown, but there are distinct regional
patterns that may be an important cause of variability in fire frequency. For exam-
ple, positive-polarity strikes occur most commonly in North America over northern
Minnesota and adjacent parts of Ontario and Manitoba, Canada (Lyons et al. 1998).
Podur et al. (2003) found evidence for regional increases in lightning ignitions in
this region of Canada, which they attributed to localized dry weather and lightning
storm occurrence, but increased frequency of positive-polarity lightning could also
contribute to this region’s anomalously frequent ignitions.

The factors that cause convection, and consequently the frequency of lightning
strikes, vary diurnally, by time of year, and between years. At large spatial scales,
lightning occurs more frequently in continental than maritime regions, and more
frequently at intermediate elevations than at higher elevations (which in turn occurs
more frequently than at low elevations). Across North America, the greatest density
of lightning strikes occurs in central Florida, and decreases toward the northwest.
Relatively few lightning strikes occur west of the Western Cordillera in either the
United States or Canada (Huffines and Orville 1999; Burrows et al. 2002).
Superimposed on this large-scale pattern there are important regional differences in
the frequency of lightning strikes. Topographic variability and land-water tempera-
ture differences influence patterns of atmospheric convection, resulting in sub-
regional patterns of lightning variability. For example, in Colorado lightning strikes
occur most frequently just east of the Continental Divide (Lopez and Holle 1986).
Similarly, in Canada, a regional increase in lightning strikes is found in the foothills
region, east of the Rocky Mountains (Burrows et al. 2002).

Surprisingly, however, most researchers have found a poor correspondence
between the frequency of lightning strikes and the frequency of ignition events,
suggesting that lightning is a necessary but not sufficient condition for wildfire
to occur (Morris 1934; Nash and Johnson 1996; Rorig and Ferguson 1999;
Latham and Williams 2001). The factors that cause spatial variability in light-
ning frequency include atmospheric humidity, topography, and surficial proper-
ties. These same factors are associated with changes in vegetation type that in
turn influence the flammability and continuity of fuels. Consequently, patterns
of lightning frequency alone are poor predictors of patterns in wildfire
occurrence.

Part of this discrepancy is because for ignition to occur, lightning needs to strike
a fuel bed that is sufficiently dry to maintain combustion, and sufficiently continu-
ous for fire to spread. The percentage of successful ignitions per cloud-to-ground
lightning strike, termed lightning ignition efficiency, typically ranges between 1
and 4% (Meisner 1993; Latham and Williams 2001). Because the processes that
generate lightning require moisture, and are usually associated with precipitation,
successful ignitions occur most efficiently under fairly specific conditions (Nash
and Johnson 1996). In particular, ignitions occur when fuels are particularly dry
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due to antecedent weather conditions (see below), and when lightning strikes are
not accompanied by precipitation. This “dry” lightning occurs most frequently
when the lower atmosphere is particularly unstable, resulting in intense convection
and often dry conditions in the lower atmosphere that cause precipitation to evapo-
rate before it reaches the ground (Rorig and Ferguson 1999). These same conditions
are also associated with gusty winds that contribute to rapid fire spread. Although
dry lightning is probably the most effective cause of ignitions, it is not the only type
of lightning that ignites wildfires. Ignitions can also occur in cases where the fuel
bed is exceptionally dry, and the precipitation associated with the thunder storm is
not sufficient to inhibit burning, during small fast-moving storms that deliver little
precipitation to any single location, or when the lightning strikes outside the main
plume of the storm (Rorig and Ferguson 2002).

Ignition efficiency differs between various land cover types. Meisner (1993)
examined lightning strike and ignition frequency in southern Idaho as functions of
the dominant vegetation type. He found that ignition efficiencies ranged from 0.3%
(for agricultural crops) to 10% (for logging slash). Mature forests ranged from
about 2-4%. Latham and Williams (2001) reached similar conclusions for a more
extensive region, and indeed found that some areas of exceptionally high strike
density had actually experienced no fires over the duration of their analysis. In
California, desert regions experience the most lightning per unit area, but ignitions
are very rare due to the discontinuous nature of the fuel bed (van Wagtendonk and
Cayan 2008). Krawchuk et al. (2006) found that conifer forests were more likely to
burn than nearby deciduous forests. Ignition efficiency also differs between loca-
tions within the same basic vegetation type. For example, Diaz-Avalos et al. (2001)
found that in the Blue Mountains in Oregon ignition efficiency was higher at lower
elevations despite the lower frequency of lightning strikes, and peaked within the
central portion of the range—although they were unable to explain the reason for
this spatial pattern.

4.2.2 Fire Spread

It is generally recognized that the great majority of area burned by wildfire is
caused by relatively few fires that occur under extreme weather conditions
(Schroeder 1969; Strauss et al. 1989; Johnson and Wowchuk 1993). For example,
one commonly repeated statistic suggests that 99% of the area burned is caused by
1% of the fires. Although the actual figure is probably closer to 90% (Strauss et al.
1989), the importance of relatively few fires causing the bulk of the variability in
area burned remains the same. These fires are usually associated with high tempera-
tures, exceptionally low relative humidity, and strong winds (Schroeder 1969;
Flannigan and Harrington 1988; Crimmins 2000).

The relationship between fire spread and short-term variations in meteorological
variables is reasonably well understood. Early work by Fons (1946) was built on, in
particular, by Rothermel (1972, 1983) to develop empirical models of fire spread based
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on fuel characteristics, slope, and wind speed. Several fire spread simulators based on
these mathematical models are now used operationally and in the development of
management plans (Finney 1998, 1999; Hargrove et al. 2000; Andrews 2007; Tymstra
et al. 2007). These models explain how fire spreads across a given landscape in
response to critical fire weather, but do not offer insights into how fire is synchronized
across landscapes to give rise to characteristic years of exceptionally high or low fire
activity. Schroeder (1969) undertook the first systematic effort to identify meso-scale
patterns of atmospheric pressure associated with extreme fire hazard. The patterns
most strongly associated with extreme fire hazard are characterized by anomalous high
surface pressure. These systems, commonly called blocking ridges, divert moisture
away from the region (Wiedenmann et al. 2002). Along their margins (or during their
passage) strong pressure gradients contribute to strong winds that cause rapid spread.
When blocking ridges are particularly intense the passage of cyclonic storms may pro-
duce strong wind and lightning, but little precipitation (Rorig and Ferguson 1999).

A second common set of patterns was associated with air masses that cross
mountains (Schroeder 1969). Moisture is lost from these systems due to orographic
precipitation along the windward slopes. As the (now) dry air descends the lee
slopes it warms by compression, and relative humidity decreases further. Along the
eastern slopes of the Rocky Mountains these winds are called Chinooks. Fire dan-
ger is greatest when Chinooks are associated with ridges west of the Rocky
Mountains that enhance drying due to subsidence, and contribute to strong pressure
gradients and the resulting surface winds. An analogous but more severe fire-
weather pattern occurs when winds are easterly, i.e. from the continental interior to
the coast. In these cases, the air mass is typically dry to start with, and is exception-
ally dry when it reaches the coast. These winds are generally termed foéhn winds,
but often have local names such as Diablo, sundowner, or Santa Ana winds. In
southern California and northern Baja California Santa Ana winds are associated
with some of the most extreme wildfires (Keeley et al. 1999; Keeley and
Fotheringham 2002) many of which spread into the urban wildland interface result-
ing in losses of structures and human lives (Keeley et al. 2004).

The synoptic circulation patterns that Schroeder (1969) identified have since
been validated using more extensive data and objective analytical techniques (e.g.,
Skinner et al. 1999, 2002; Gedalof et al. 2005; Crimmins 2006), and confirmed in
a large number of case studies (e.g. Countryman et al. 1969; Sando and Haines
1972; Finklin 1973; Street and Alexander 1980). Little work has been done, how-
ever, to explicitly link this variability in severe fire weather to large-scale ocean—
atmosphere interactions. Such a linkage is implicit in analyses that identify climatic
patterns at timescales longer than about 10 days (Flannigan and Harrington 1988;
Johnson and Wowchuk 1993; Skinner et al. 1999, 2002; Gedalof et al. 2005; Trouet
et al. 2006), but none of these analyses discriminated the factors that contribute to
fire hazard (such as fuels production and fuels drying) or ignition efficiency from
those that contribute to rapid spread. There is evidence that the frequency of
extreme events differs depending on the state of large-scale modes of variability,
suggesting that such an analysis might prove fruitful. For example, Thompson and
Wallace (2001) found that strong winter winds in coastal Washington and Oregon
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occur approximately three times more often during the positive phase of the
Northern Hemisphere Annular Mode than during the negative phase. Similarly,
blocking ridges in the Pacific Region occur more commonly during the cold (La
Nifia) phase of the El Nifio Southern Oscillation than during the warm (EI Nifo)
phase (Wiedenmann et al. 2002).

4.2.3 Fuel Moisture

Most land cover types are not so flammable that the above processes alone can
explain the regional synchrony of severe fire years. Depending on the dominant
vegetation structure, some period of antecedent drought is needed to dry the fuel
bed so that fire will spread rapidly (Johnson and Wowchuk 1993; Bessie and
Johnson 1995; Meyn et al. 2007; Littell et al. 2009). The relative importance of
antecedent drought varies, depending on both mean regional climate and the struc-
ture and composition of the fuel bed. In particular, the relative abundance of fine
vs. coarse fuels, and the continuity of the fuel bed, determine the importance of
antecedent drought in preconditioning stands to burn (Schoennagel et al. 2004,
2005; Gedalof et al. 2005). Because the relative abundance and arrangement of fine
fuels differs between land cover types, their drying rate and capacity to carry fire
will also differ (Westerling et al. 2003; Gedalof et al. 2005).

Two basic factors regulate the moisture of fuels. First, plant functional type
determines the phenology of vegetation (which determines whether foliage and
shoots are metabolically active, dormant, or dead) as well as its structure and physi-
ology (which determines its capacity to maintain high moisture levels in either
plant tissue or in dead organic matter). Second, antecedent weather determines the
moisture available to vegetation, as well as the rate of evaporative and transpirative
losses. At their extremes, these processes support the ideas of ignition-limited eco-
systems (those with abundant fuels, but that do not burn due to the infrequency of
ignition events or the high moisture of fuels) vs. fuel limited ecosystems (those that
experience frequent potential ignitions, but that often do not have sufficiently abun-
dant or continuous fuels to allow fire to spread). Meyn et al. (2007) provide a useful
conceptual framework for synthesizing these processes, and also identify a third
type of ecosystem that does not fit neatly into this dichotomy. They characterize
these ecosystems as “biomass poor, rarely dry,” and they are both fuels and ignition
limited. Examples include subalpine forests, temperate savannas, many wetlands,
and some types of chaparral.

High temperatures, low relative humidity, and strong winds in the days to
months preceding a potential ignition dry living and dead fuels, and can cause
vegetation to senesce. The relative importance of antecedent drying varies by
ecosystem type, with some ecosystems requiring much longer periods of time to
dry sufficiently to carry fire than others (Westerling et al. 2003). For example,
Gedalof et al. (2005) analyzed the relative importance of drought in the months
preceding extreme wildfire years in the Pacific Northwest, USA, and found that
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coastal temperate rainforest experienced large area burned only during years of
exceptional drought persisting throughout the winter and spring preceding the fire
season. In contrast, dry forest types such as those found in eastern Washington and
Oregon experienced extreme wildfire years even in the absence of persistent
drought. These differences in sensitivity to antecedent climate can be explained in
part by the relative abundances of fine fuels. Many wet forests are characterized
by abundant standing and down woody debris that retains moisture effectively
(Franklin et al. 1981). These large fuel classes require prolonged dry periods
before they become flammable, and they also buffer surface vegetation against
prolonged soil-moisture deficits by providing a reservoir of moisture. Closed-
canopy forests further buffer surface fuels from drying by reducing insolation,
temperature, and windspeeds at the surface, and by helping to maintain high
relative humidity (Chen et al. 1999).

In ecosystems with higher relative abundances of fine fuels, such as grasslands,
savannas, and chaparral, shorter periods of dry weather are sufficient to precondition
ecosystems to burn (Westerling and Swetnam 2003; Gedalof et al. 2005). This dif-
ference can be explained in part by the faster drying rate of fine fuels, but is also
enhanced by the tendency for these ecosystems to have lower canopy cover, and thus
greater evaporation and transpiration from the surface. Many ecosystems dominated
by fine fuels also have greater proportions of annual vs. perennial vegetation — mean-
ing that there is more dead fuel at the surface (Knapp 1995). These fuels dry more
readily than living vegetation, because they do not maintain internal moisture by
using groundwater or resisting transpiration through adaptive measures.

Xeric ecosystems dominated by fine fuels respond to shorter-term variations in fire
weather, and are generally more sensitive to the availability of a continuous fine fuel
bed (see below), but they are also responsive to seasonal patterns of moisture avail-
ability. For example, in southwestern ponderosa pine forests regionally synchronous
fire years are strongly associated with drier than average spring conditions (Swetnam
and Betancourt 1990). In addition to synchronizing fire activity, large-scale drought
may also increase the severity of fire in landscapes more commonly associated with
low-severity fire — leading to a complex mosaic of snags, and patches of living trees
with heterogeneous age structures (Agee 1998; Baker et al. 2007).

4.2.4 Fuels Production

At seasonal and longer timescales, climatic variability can affect the wildfire
regime by modifying the abundance and continuity of fuels, and the relative abun-
dance of fine vs. coarse fuels. As with fuel moisture, the relative importance of
antecedent climate in fuels production varies depending on the dominant vegetation
present, and the climate of the region (Westerling et al. 2003; Gedalof et al. 2005;
Littell et al. 2009). Because the rate of fire spread and intensity at the flaming front
is determined primarily by fine fuels, it is largely this fuel component that limits
the ignition and spread of fire in most ecosystems (Rothermel 1972; Bessie



4 Climate and Spatial Patterns of Wildfire in North America 97

and Johnson 1995). Most closed-canopy forests have abundant fine fuels, and do
not increase in fire hazard with increased production beyond the point at which
closed-canopy conditions are achieved, which typically occurs in the first two or
three decades of development (Bessie and Johnson 1995; Schimmel and Granstrém
1997; Keeley et al. 1999; Johnson et al. 2001; Schoennagel et al. 2004).

In ecosystems that are characteristically dry enough that fuels are patchy,
climatic conditions conducive to the growth of vegetation may increase the abun-
dance and continuity of fine fuels, increasing the potential for fire during subsequent
seasons (Swetnam and Betancourt 1998; Westerling et al. 2003; Collins et al.
2006). Open ponderosa pine forests that are characterized by short fire return inter-
vals often show positive correlations to precipitation in the year(s) preceding
regionally synchronous fire years (e.g. Swetnam and Betancourt 1998; Brown and
Shepperd 2001; Kitzberger et al. 2007). This relationship is not constant throughout
the species’ range, however. For example, Sherriff and Veblen (2008) found that
antecedent moisture increased fire occurrence in ponderosa pine forests in northern
Colorado only at low elevations; at higher elevations this relationship was unim-
portant. Brown and Shepperd (2001) found that it occurred only in the southern-
most portion of their study region in Colorado and Wyoming. In the northern
portions of their study region they found that fire was associated only with drought
during the year of fire. They also found that stand-replacing fires occurred fre-
quently throughout the study region, even in the pre-suppression era. In the U.S.
Southwest, relationships to antecedent moisture are more common due to the
generally shorter fire-return interval and warmer mean climatic conditions, which
limit fuel accumulation and production respectively (Swetnam and Betancourt
1998; Stephens and Collins 2004), but even there it is generally restricted to
ponderosa pine forests and the relationship is not found for mixed conifer forests in
the same region (Swetnam and Baisan 1996).

Antecedent moisture plays a particularly strong role in producing fuels and syn-
chronizing fire in ecosystems dominated by annual grasses and herbs (Cable 1975;
Knapp 1995; Brooks and Matchett 2006). Indeed, this relationship is sufficiently
important in grass dominated ecosystems that in the Great Plains region at long
time periods (decades to centuries), fires are more commonly associated with
prolonged wet periods than dry ones (Brown et al. 2005) — although conditions are
likely dry while fires actually burn. The importance of grasses in producing a
continuous fine fuel bed that will carry fire has changed the fire regime of many
arid and semi-arid ecosystems where exotic grasses have invaded. For example, in
the Intermountain West the introduction of annual grasses, especially cheatgrass
(Bromus tectorum) has increased the size and frequency of wildfires (Knapp 1995).
This change to the fire regime has altered vegetation dynamics, as the affected
communities have not evolved with frequent fire (Knapp 1998). The result has
been reduced biodiversity, and economic losses associated with lost pasture and
suppression efforts.

In North American deserts introduced grasses have caused fires to occur in
regions that would historically have experienced little or no fire at all (Brooks and
Pyke 2001; Brooks and Matchett 2006). These fires are disrupting regeneration of
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desert vegetation that is not adapted to fire, and in some regions have converted
desert scrub to grassland. In these regions the relationship between fire and climate
has changed: whereas historically fire would have occurred very rarely, and only
following multiyear to decadal pluvials, it is now occurring following short wet
periods lasting perhaps a single season (Brooks and Pyke 2001).

4.3 Patterns of Top-down Control

A distinctive feature of the Earth’s climate system is that it varies over time and
space in characteristic patterns or “modes” of variability. Some of these modes,
such as diurnal or seasonal temperature fluctuations, are readily observable and can
be easily explained as a result of the Earth’s rotation and revolution around the sun.
Other modes are less readily observable, affect different regions of the Earth
uniquely, and overlap in time and space (Namias and Cayan 1981). These modes of
variability influence patterns of atmospheric pressure, temperature, and precipita-
tion over spatial scales that exceed 10° km?, and over timescales of months to
decades or longer (Wallace 2000). They influence fire frequency mainly through
their influence on rates of fuel production and drying, but may also influence the
frequency of ignitions and the statistics of extreme winds. Their spatial imprint on
the wildfire record is a result of interactions between the spatial expression of the
mode of climatic variability and the response of individual ecosystems to variability
in climate. There are a dizzying array of these modes documented in the literature,
although many of them are probably related to each other (Dommenget and Latif
2002), or statistical artifacts rather than separate physical processes (Enfield 1989;
McPhaden et al. 2006). Nevertheless, a few of these modes are emerging as funda-
mental. In this section I review four of the more important modes that impact North
America, and summarize their influence on wildfire. I use the term teleconnection
to explain how climatic variability in one region affects the climate of more distant
locations (Wallace and Gutzler 1981).

4.3.1 The EI Nifio Southern Oscillation

The El Nifio Southern Oscillation (ENSO) is the most important source of global
climatic variability at interannual timescales. ENSO events result from feedback
between the tropical oceans and atmosphere (Wyrtki 1975). During non-ENSO
years, the trade winds blow from east to west, and surface waters are pushed away
from South America towards Indonesia. These waters warm as they are heated by
the sun, and the height of the sea surface increases as water accumulates along the
western margin of the Pacific Ocean. On average, the surface height is about 0.5 m
higher along the Indonesian coast than along the South American coast (Enfield
1989). This warm water pool heats the air above it, causing it to rise—helping to
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maintain the east-to-west flow of the trade winds, and bringing the high rainfall
typical of Indonesia. Episodically, the trade winds weaken, and the pool of warm
water “sloshes” eastwards towards South America. This process further weakens
the trade winds, accelerating the eastward movement of the warm water. This
system is coupled, in that either the ocean or the atmosphere can initiate the event,
and the feedback between them will cause it to strengthen. These events are
known as “warm ENSO events” due to the anomalous heating of the Pacific Ocean
east of the International Date Line. They are also often simply called El Nifio
events, although strictly this term applies to only the oceanic component of the
system. ENSO events typically initiate in September, are most strongly expressed
from December to April, and then decay from September through to March of the
following year (Namias 1976; Ropelewski and Halpert 1986; Yarnal and Diaz
1986; Hamilton 1988; Kiladis and Diaz 1989; Sardeshmukh 1990; Diaz and
Kiladis 1992).

At the peak of warm events, the weakening of the tropical Pacific trade winds
and the redistribution of heat along the equator disrupts the global climate system,
redistributing energy and moisture (Trenberth et al. 1998). Although there is con-
siderable variability in the effects of warm ENSO events, the average response
during the boreal winter (December to February) includes anomalous dry condi-
tions in the western Pacific, including Indonesia, southeast Asia, and Australia, and
warm wet conditions in the central and eastern tropical Pacific (Ropelewski and
Halpert 1986; Trenberth et al. 1998). In North America, winter conditions are typi-
cally warmer throughout southern Canada and the northern United States.
Precipitation effects are more variable, but the Pacific Northwest, USA, is typically
drier than normal, while Alaska and the southwestern United States are wetter than
normal (Trenberth et al. 1998).

Cool ENSO (or La Nifia) events are largely opposite to warm events. They are
associated with enhanced trade winds, a larger temperature and height gradient
between the western and eastern Pacific Ocean, and approximately the opposite
teleconnections. For example, regions of the Earth that are droughty during
warm events often are exceptionally wet during cool events (McCabe and
Dettinger 2002).

The effects of ENSO events on wildfire vary regionally and sub-regionally,
depending on the sign and magnitude of the individual event’s effect on climate
(Fig. 4.1), and properties of the local vegetation. As the most important mode of
global climatic variability, its effect on wildfire spans the globe, with significant
effects on every continent except Antarctica (Nkemdirim and Budikova 1996;
Kitzberger et al. 2001). Because the ENSO teleconnection to North America is
strongest during the boreal winter, in many regions the strongest climatic impact is
on total winter snow accumulation (Cayan 1996; Moore 1996). Winter snow accu-
mulation can affect wildfire behavior through two contrasting mechanisms. First, in
regions where snow persists into the summer, such as at high elevation, higher than
normal snow accumulation will shorten the length of the fire season and help to
maintain high moisture levels. These processes collectively decrease the likelihood
of fires occurring (Westerling et al. 2006; Heyerdahl et al. 2008). Second, in
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Fig. 4.1 (a) Time evolution of the four dominant modes of variability affecting the climate of North
America: the El Nifio Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the
Northern Hemisphere Annular Mode (NAM), and the Atlantic Multidecadal Oscillation. (b) Spatial
regressions of each index onto the winter and summer Palner Drought Severity Index (PDSI) records
for North America. The maps show the typical effect of a one-standard deviation increase in the
associated index on regional PDSI
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particularly dry regions higher winter precipitation can promote the growth of
grasses and shrubs, which increases the abundance and continuity of fine fuels
(Westerling et al. 2003; Brown et al. 2005; Gedalof et al. 2005).

The best documented ENSO effects on wildfire occur in the U.S. Southwest,
where warm (EIl Nifio) events are associated with increased precipitation and reduc-
tions in area burned; cool (La Nifia) events exhibit the opposite relationship
(Swetnam and Betancourt 1990). Often the most widespread fire years occur when
cool (dry) events follow warm (wet) events, and fuel production associated with the
warm event is dried and burns during the subsequent cool event (Swetnam and
Betancourt 1998). Similar effects occur in the U.S. Southeast, where cool events
were found to be associated with decreased rainfall, increased lightning strikes, and
consequently more and larger fires (Beckage et al. 2003; Dixon et al. 2008).
Because the fire season in the Southeast occurs during winter months ENSO effects
are particularly strong, explaining up to 50% of the variability in area burned
(Brenner 1991). ENSO teleconnections to the Pacific Northwest are approximately
opposite to those in the U.S. Southwest and Southeast, and warm events are associ-
ated with drier than normal conditions (Kiladis and Diaz 1989). Because the stron-
gest impact is on winter conditions, though, the effect on fire frequency at most
forest types in the Pacific Northwest is small. For example, Norman and Taylor
(2003), Gedalof et al. (2005), and Heyerdahl et al. (2008) all found no significant
associations between wildfire occurrence and ENSO (but see Hessl et al. 2004),
although they did find that it interacted with other processes (see below) signifi-
cantly. Surprisingly few analyses have been undertaken on the effect of ENSO
variability on wildfire activity in the boreal forest. Macias Fauria and Johnson
(2006, 2008) found an association between ENSO-like conditions and fire weather
for the boreal forest of North America. They did not explicitly separate ENSO
conditions from Pacific Decadal Oscillation conditions (see below), however, and
they focused on fire weather rather than regionally synchronous fire events. They
found that warm ENSO-like conditions were associated with reduced wildfire haz-
ard west of the Canadian Rocky Mountains, and increased wildfire hazard over the
western prairies.

4.3.2 The Pacific Decadal Oscillation

The Pacific Decadal Oscillation (PDO) is an ENSO-like mode of variability that is
most strongly expressed in the North Pacific Ocean (Mantua et al. 1997). The pre-
cise mechanisms that force it are still unclear, but it does appear to be distinct from
ENSO (Zhang et al. 1997; Barlow et al. 2001; Gedalof et al. 2002). The temporal
variability in the PDO is characterized by intervals of anomalously warm or cool
water in the central North Pacific Ocean that persist for 20-30 years, punctuated by
abrupt shifts between phases (Mantua et al. 1997; Minobe 1999; Gedalof and Smith
2001). Superimposed on this low-frequency pattern there is considerable year-to-
year variability. The effect on the climate of North America is strongest over the
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coastal Pacific Northwest, and during winter (Fig. 4.1b). The warm phase of the
PDO is associated with slightly elevated winter temperatures, and reduced precipi-
tation, especially west of the Cascade Range. The PDO also affects other regions
of North America, most notably the Canadian prairies, where the warm phase is
associated with increased drought (Shabbar and Skinner 2004), and the U.S.
Southwest, where it is associated with increased precipitation.

The effects of the PDO on wildfire activity are generally weak but significant
throughout the Pacific Northwest. Gedalof et al. (2005) found no significant
difference in the area burned by wildfire in the Pacific Northwest between the
warm and cool phases of the PDO, although they did find a significant correlation
between the PDO index and area burned. They also found that seven of the ten
largest-fire years followed winters when the PDO index was positive, whereas eight
of the ten smallest-fire years occurred following winters when the PDO index was
negative. These results together suggest that the PDO exerts important controls on
wildfire at annual to interannual scales, if not at interdecadal scales. Similarly, Hessl
et al. (2004), examining fire activity in central and eastern Washington, found that
the six most regionally coherent fires since 1650 all occurred when the PDO index
was positive.

Few analyses of PDO-fire interactions for regions outside the Pacific Northwest
have been undertaken to date, although the PDO has been examined for its modu-
lating effect on ENSO. Brown (2006) found an inverse correspondence between
wildfire activity in ponderosa pine forests in the Black Hills, South Dakota, and a
tree-ring reconstruction of the PDO (cf. Biondi et al. 2001). Similarly, in Mississippi
the cool phase of the PDO is associated with increased wildfire activity (Dixon
et al. 2008). However there are two good reasons to believe that it may be an impor-
tant determinant of fire activity in at least the arid Southwest and possibly other
grass-dominated ecosystems. First, the influence of the PDO is primarily on winter
precipitation, which has more of an effect on fuels production than on fuel moisture
during the fire season. Second, several analyses of grass-fire interactions have noted
a correspondence between wildfire and several wet years followed by one dry
one. The persistent nature of the PDO should affect the frequency of these types
of events.

The PDO has been found to interact with other modes of climatic variability to
influence the fire regime. Gershunov and Barnett (1998) examined climatic condi-
tions for various combinations of ENSO and PDO phases, and found that the two
modes enhance each other when they are in the same phase (e.g., an El Nifio event
during the warm phase of the PDO), and they offset each other when they are in
opposite phases (e.g., a La Nifia event during the warm phase of the PDO). A num-
ber of fire-climate studies have found these interactions to be an important source
of variability in regionally synchronous fire years. Corresponding warm phases are
associated with increased wildfire activity in pine forests in northeastern California
(Norman and Taylor 2003), in subalpine forests in Yellowstone and Jasper National
Parks, in the central United States and southern Canadian Rocky Mountains,
respectively (Schoennagel et al. 2005), and in Douglas-fir and ponderosa pine
forests in the Pacific Northwest (Heyerdahl et al. 2008). Corresponding cool phases
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are associated with increased wildfire activity in subalpine forests in Rocky
Mountain National Park, in the southern U.S. Rocky Mountains (Schoennagel et al.
2005), in ponderosa pine forests in northern Colorado (Sherriff and Veblen 2008)
and South Dakota (Brown 2006; Kitzberger et al. 2007). An analysis of fire weather
in the Canadian boreal forest suggests that west of the Rocky Mountains, increased
fire hazard is associated with the cool phases of ENSO and the PDO; the opposite
relationship was found for regions east of the Rocky Mountains (Macias Fauria and
Johnson 2006).

4.3.3 The Northern Hemisphere Annual Mode

The Atlantic Ocean exerts a smaller influence on the climate of North America
than the Pacific Ocean does, due to the prevailing westerly circulation in mid lati-
tudes. Nevertheless, several related modes of climatic variability may exert impor-
tant controls that are relevant to patterns of wildfire. The Northern Hemisphere
Annular Mode (NAM) is a pattern of variability in atmospheric pressure that is
characterized by out-of-phase differences between the polar and subpolar sectors
(Thompson and Wallace 1998, 2000). Although some disagreement exists as to
which is the fundamental process (Ambaum et al. 2001), the NAM is very closely
related to the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO),
and they are assumed to be the same process for the discussion here.

In North America the positive phase of the NAM is associated with anomalous
warm temperatures in the eastern half of the continent, south of the Great Lakes
(Thompson and Wallace 2001; Visbeck et al. 2001) (Fig. 4.1b). Precipitation
relationships are weak, but slightly drier than normal conditions occur through
much of central North America. A wide range of winter climatic extremes have
been found to be associated with the NAM, including short-term events (rather
than mean conditions), and events in western North America (Thompson and
Wallace 2001). The summer climate of North America has not been analyzed
in this fashion, but it seems likely that similar relationships would exist for
variables that could affect fire such as temperature, lightning, strong winds, and
precipitation.

The role of the NAM in forcing wildfire has not been widely studied. However
Macias Fauria and Johnson (2006; see also Le Goff et al. 2007) found that the posi-
tive phase of the NAM was associated with almost 70% of large fires in eastern
Canada; the negative phase was associated with increases in fire in Alaska and the
Northwest Territories. Dixon et al. (2008) found complex relationships between
variability in the NAM and area burned in Mississippi: Significant negative correlations
were found between total area burned in March and April (the height of the fire
season) and the February state of the NAM. Curiously, area burned in October,
November, and December was positively correlated to the NAM during September.
They attribute these opposing relationships to differences in the seasonal expression
of the NAM. In the late winter, the negative phase of the NAM is associated with
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drier than normal conditions, which would reduce fuel moisture. In the summer, the
positive phase is associated with increased convection, dry lightning, and strong
winds, which would increase the frequency of ignitions and the rate of spread.
Given that these processes have distinct effects that are modulated by vegetation
structure and composition it is possible that they have distinct spatial expressions
within this region.

4.3.4 The Atlantic Multidecadal Oscillation

The Atlantic Multidecadal Oscillation (AMO) is a slowly changing pattern of vari-
ability in North Atlantic surface temperatures. It was first identified by Schlesinger
and Ramankutty (1994), and later named by Kerr (2000) It is characterized by
alternate warming and cooling in the Atlantic Ocean north of the equator, with a
period of approximately 65-80 years (Delworth and Mann 2000; Enfield et al.
2001). The warm phase of the AMO is associated with decreased rainfall through-
out most of central North America, but increased rainfall in Florida and in some
regions of the Pacific Northwest (Enfield et al. 2001).

Because of its slowly changing nature the AMO does not exert a strong control
on year-to-year variability in wildfire (Fig. 4.1b). However it may influence patterns
of vegetation structure and composition, fuel production and accumulation, and the
frequency of ignitions, which in turn feed back to modulate the fire regime at longer
timescales (Sibold and Veblen 2006; Schoennagel et al. 2007). The AMO has also
been found to interact with other modes of variability to influence regional syn-
chrony of wildfires. Throughout most of the U.S. Western Interior, years when the
positive phase of the AMO corresponds to negative phases of ENSO and the PDO
are associated with the most regionally synchronous wildfire (Kitzberger et al. 2007).
This same pattern has been found in subalpine forests (Schoennagel et al. 2007) and
ponderosa pine forests (Sherriff and Veblen 2008) in Colorado. South of central
Colorado this association shifts, and wildfires are most commonly associated with
combined negative phases of the AMO, ENSO, and the PDO (Kitzberger et al.
2007). In the Pacific Northwest fires are associated with the negative phase of the
AMO combined with the positive phases of ENSO and the PDO (Kitzberger et al.
2007). The AMO has not been found to influence fire in the boreal forest (Macias
Fauria and Johnson 2006; Le Goff et al. 2007). Relationships in the U.S. Southeast
are inconsistent, but weakly negative (Guyette et al. 2006; Dixon et al. 2008).

4.4 Fire in the Future

The Earth’s climate is changing in response to the actions of people (Solomon et al.
2007), and fire regimes will change in response to changing climates. The effects
of climate change will differ regionally due to variability in the magnitude and
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seasonality of climatic changes, as well as differences in how vegetation and fire
respond to climate. One approach to predicting how fire will change in response to
climate change is to model the current relationship between fire and climate, and
then use future climate projections to assess change. Nearly all of these efforts
predict a substantial increase in wildfire activity over the next century, including
analyses of the Canadian boreal forest (Stocks et al. 1998; Gillett et al. 2004) and
the western United States (McKenzie et al. 2004). Exceptions to this general pattern
are rare, but include regions where fine-fuel abundance and continuity are more
important than flammability, such as in the deserts of eastern California (Westerling
and Bryant 2008).

A second approach to forecasting fire activity in the future involves using down-
scaled climate projections to assess fire hazard based on operational guidelines or
process based models (e.g. Torn and Fried 1992). These models have the advantage
of reducing the complexities introduced by land use change, fire management prac-
tices, and vegetation change and focusing simply on the climate-associated fire
hazard compared to today (Brown et al. 2004). They also have the advantage of
forecasting fire hazard indexes in use by managers, providing a recognized ‘“‘cur-
rency” for planning purposes. Flannigan and Van Wagner (1991) examined sea-
sonal fire severity for the Canadian boreal forest under a range of climate projections
and determined that annual area burned would increase by 46% with a doubling in
carbon dioxide (CO,) (see also Flannigan et al. 2000, 2001). Brown et al. (2004)
evaluated fire hazard in the western United States, and determined that the number
of days of severe fire weather will increase throughout their study region by up to
2 weeks per year by 2089. These effects are strongest in the northern Rocky
Mountains, the Great Basin, and the Southwest. Although all of these models pre-
dict an overall increase in wildfire there are considerable regional differences in the
magnitude and even the sign of the change, depending on the projection used
(Flannigan et al. 2001).

Most analyses of the effects of climatic change on wildfire have focused on
temperature and precipitation as the driving variables, but other approaches are
possible. For example Miller and Schlegel (2006) modeled the occurrence of Santa
Ana winds under a range of future climate scenarios, and concluded that Santa Ana
occurrence “may significantly increase the extent of California coastal areas burned
by wildfires, loss of life, and property.” Price and Rind (1994) modeled thunder-
storm activity and concluded that lightning activity in the United States will
increase by 26% and annual area burned would increase by 78%.

These efforts may provide insights into fire activity for the next several decades,
but they assume that vegetation structure and composition are static. However, as
vegetation responds to more frequent fire and changing climate, there may be rapid
changes to ecosystem structure and composition (Bachelet et al. 2001Db).
Consequently these forecasts are probably unreliable beyond a few decades. There
have been a number of efforts to model the interaction between climatic change,
wildfire, and vegetation (e.g. Neilson and Drapek 1998; Bachelet et al. 2001a, 2003;
Thonicke et al. 2001). To date, these efforts have produced variable results, depend-
ing on assumptions about the role of atmospheric carbon, nitrogen limitations, and
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disturbance (Running 2008). Neilson and Drapek (1998) provide one perspective
on why this exercise is both critically important and particularly challenging. In a
comparison of short-term CO, effects on vegetation distribution vs. long-term
combined temperature and CO, effects, they found that in many locations the trajec-
tory of ecosystems reversed direction over time. For example, near-term expansion
of grasslands into arid lands and westward expansion of eastern temperate mixed
forest reverse in the long-term, and substantial area is ultimately lost. Fire and other
disturbances are the most likely mechanism of vegetation dieback.

These predictions seem dire, but there is a growing body of evidence that fire is
already increasing in severity or frequency. For example, Westerling et al. (20006)
found that annual area burned by wildfire in the western United States has increased
by a factor of more than 6.5 relative to 1970. They attributed this change to earlier
snowmelt and longer fire seasons. Similarly, Kurz and Apps (1999; see also Kurz
et al. 2008) concluded that fire and insect disturbance have caused the Canadian
boreal forest to become a source of carbon since 1979, in contrast to the preceding
60 years. There is also a growing body of evidence to suggest that climatically
induced forest dieback is underway at many locations in western North America:
Breshears et al. (2005) found evidence for drought-induced dieback of two-needle
pinyon pine (Pinus edulis) in the southwestern United States. van Mantgem et al.
(2009) documented increased mortality among a wide range of species and age
classes throughout the western United States and Canada that they attributed to
climate-induced water deficits. Logan and Powell (2001) found that recent warm-
ing has allowed the mountain pine beetle (Dendroctonus ponderosae) to expand its
range to higher elevations and thereby attack whitebark pine (Pinus albicaulis),
leaving behind “ghost forests.” These changes alter forest habitat quality, but also
the abundance and moisture of fuels, and the likely development of forest ecosys-
tems over the coming decades.

4.5 Summary and Conclusions

Climatic processes act as top-down controls on regional patterns of fire ignition,
rate of spread, fuel moisture, and fuel abundance and continuity. Lightning is the
most important natural cause of fire ignition. Lightning frequency varies at conti-
nental, regional, and local scales, with areas of convergence and convection
experiencing the highest frequency of lightning strikes. In mountainous regions the
greatest frequency of lightning strikes often occurs at intermediate elevations.
Lightning frequency alone is a poor predictor of the number of ignitions or total
area burned, partly because lightning is often accompanied by precipitation, but
also because not all vegetation types are equally flammable and ignition efficiency
varies between land cover types. Following ignition, rates of spread are most rapid
when strong winds, low humidity and high temperatures coincide. Regionally syn-
chronous conditions conducive to rapid rates of spread are associated with several
specific synoptic circulation types. In particular, persistent blocking ridges often
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contribute to the development of strong pressure gradients and intense cyclonic
activity that contributes to rapid fire spread. Another important set of circulation
patterns is associated with air masses that cross mountains. These masses lose
moisture as they are pushed up the windward side of mountains, and warm and dry
rapidly as they descend the leeward side. The most severe of such patterns is prob-
ably the Santa Ana winds, which are associated with extreme wildfire hazard in
southern California.

Patterns of ignition and spread depend on slower varying patterns in fuel mois-
ture and fuel abundance. Fuel moisture is a function of climate over the days to
years preceding ignition. In regions such as the coastal temperate rainforest where
there are abundant coarse fuels, a seasonally wet climate, high soil water-storage
capacity, and dense canopy cover, extended periods of antecedent drying are a
necessary precondition to wildfires. At the other extreme, arid and semiarid ecosys-
tems frequently have conditions conducive to ignition and spread, but require
anomalously wet conditions over the preceding seasons in order to produce the
continuous fine fuels required for fire spread. In between these extremes these pro-
cesses interact, depending on such factors as long-term changes in mean climate,
which determine dominant vegetation types; slope, aspect, and soil properties,
which influence soil moisture and microclimate, contributing to variability in
vegetation structure and composition; and recent disturbance history, which affects
the abundance of fuel and the developmental stage of vegetation.

These processes operate at different scales, and interact to give rise to regionally
synchronous wildfire years that differ depending on properties of the affected eco-
systems. The oft-cited dichotomy of “fuel vs. climate” fails to incorporate the full
range of possible relationships between top-down and bottom-up processes in regu-
lating the fire regime. For example, ponderosa pine forests in the U.S. Southwest
are both fuel- and ignition-limited, and respond to interannual variability in fuels
production but to sub-seasonal variability in drought. Several important patterns of
climatic variability influence the processes that control wildfire across a range of
temporal and spatial scales. Globally, ENSO is the most important such pattern of
variability, but over North America it interacts with the PDO, the NAM, and the
AMO to produce regionally synchronous variability in patterns of wildfire. In the
coming decades, fire is likely to be an important agent of ecosystem change, as
climatic change and exotic species increase the frequency and magnitude of wild-
fire nearly everywhere in North America.
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Chapter 5

Climatic Water Balance and Regional Fire
Years in the Pacific Northwest, USA: Linking
Regional Climate and Fire at Landscape Scales

Jeremy S. Littell and Richard B. Gwozdz

5.1 Introduction

Fire and water are linked across multiple spatial and temporal scales. Climate provides
a top-down control on fire regimes (Gedalof et al. 2005; Littell et al. 2009a, b; Chap. 4),
via seasonal-to-multidecadal patterns of temperature and precipitation and their
interaction. At fine scales, fuel structure and composition interact with micro-
meteorology to affect fire intensity and fire spread (Rothermel 1972). At all scales,
water relations provide the physical basis for understanding the variability in fire
activity and the landscape patterns it produces.

The paleoecological record (both tree-ring and sediment charcoal fire histories)
and the modern record document strong associations between fire and climate (e.g.,
Clark 1990; Swetnam and Betancourt 1990; McKenzie et al. 2004 and references
therein; Littell et al. 2009a). Due to decreasing fuel moisture, warmer drier condi-
tions should be associated with increased fire activity. Indeed, interannual relation-
ships between climate (drought indices, precipitation, temperature) and drought
are frequently implicated in the number of fires and the area burned by fires in the
western United States. Fire histories from tree-ring data indicate, however, that the
relationship between climate and fire varies considerably with the type of forest in
question. For example, regional composite fire histories from the U.S. Pacific
Northwest and northern Rocky Mountains suggest that drought and warmer
temperatures in spring and summer of the fire season are associated with regionally
synchronous fire in forested ecosystems and that antecedent conditions were
comparatively unimportant (Heyerdahl et al. 2008a,b). In contrast, for open woodland
in the southwestern United States, drought is still implicated in the year of fire, but
antecedent increases in moisture availability are also associated with synchronous
fire years (Swetnam and Betancourt 1998; Grissino-Mayer and Swetnam 2000;
Brown et al. 2008).
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The twentieth-century record also shows that area burned by fire is strongly
related to climate, although there is considerable sub-regional variation associated
with vegetation type (Westerling et al. 2003; Littell et al. 2009a). In forested eco-
systems of the Sierra Nevada, Cascade Range, and northern Rocky Mountains,
USA, warm dry summers or growing seasons are strongly associated with high area
burned, reflecting regionally synchronous fire activity. In drier forests and shru-
blands of the southern Rocky Mountains and desert Southwest, the strongest cli-
mate predictors of area burned were wetter and sometimes cooler years preceding
the fire season.

The primary mechanisms that relate climate variation to fire occurrence and
area are (1) the availability and continuity of fuels and (2) the fuel-independent
conditions that influence fire spread, such as short-term weather and fire suppres-
sion. Climatic influences on fire fall largely into the first category by influencing
the rate of fuel production and the moisture content of live and dead fuels. In eco-
systems where area burned and regional fire synchrony are positively related to
temperature and drought, the controlling mechanism would appear to be the dry-
ing of existing fuels below some threshold fuel moisture that substantially
increases flammability (Romme and Despain 1989; Johnson and Wowchuk 1993;
Nash and Johnson 1996; Littell et al. 2009a). These ecosystems are typically pro-
ductive enough that they are not fuel limited—fuel buildup is important, particu-
larly on longer time scales of decades or even centuries. The limiting factor,
however, appears to be fuel condition (Rollins et al. 2002; Littell et al. 2009a) and
suggests a lack of energy required to dry fuels sufficiently for combustion. Boreal
and cool temperate forests are examples of ecosystems in which fire is likely
energy-limited. The spatial arrangement and continuity of fuels in these systems
also does not vary much from year to year, at least on average. In contrast, fuels
in water-limited systems are frequently dry enough to carry fire, but there is typi-
cally less fuel and both canopy and surface fuels may be patchier. Increased fire
activity in these systems is associated with wetter cooler conditions in the year or
years prior to fire. The climatic correlations appear to suggest that fuel production
and fuel continuity are facilitated by climate conditions that favor vegetation, and
if so, the spatial continuity of surface fuels would vary on the time scale of years
(Rollins et al. 2002; Littell et al. 2009a). Across the western United States, there
likely exists a gradient such that vegetation types fall in between these two extremes
of climate influence on fuel availability through fuel moisture (energy-limited)
and on fuel availability through fuel production (water-limited). For example,
Milne et al. (2002) demonstrated that there are continuous scale-invariant relation-
ships between vegetation pattern and the biophysical gradient between energy-
and water-limited vegetation.

If there is a multi-scale relationship that relates climate, fire occurrence, and area
burned consistently via fuels, it must consider both temperature and precipitation
and the relative role of each in affecting the likelihood of fire occurrence and
spread. In this chapter, we are interested in these relationships on time scales from
months to years. We focus on the propensity for antecedent climate conditions to
precondition landscapes such that large areas can burn rather than on the weather
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conditions that cause fire fronts and fire behavior to produce large fires over hours
to weeks.

Fire histories and 20th century studies relate fire occurrence and area burned to
temperature and precipitation, and frequently to indices of ocean-atmosphere circu-
lation such as the El Nifio Southern Oscillation (ENSO) or the Pacific Decadal
Oscillation (PDO). However, these approaches are unsatisfying in their physical
approach to climate as plants and fuels “sense” it. During the late 20" century,
unusually warm springs and longer summer dry seasons were associated with
increased numbers of fires westwide (Westerling et al. 2006), and the connection
between these seasonal effects appears to be in water deficits during the fire season
(Littell et al. 2009a, b). Water-balance deficit (DEF) is defined as the difference
between potential evapotranspiration (PET, driven by temperature, solar radiation,
wind, etc.) and actual evapotranspiration (AET, driven by water availability). When
PET exceeds AET, water-balance deficit is positive (vegetation is water-limited).
DEF in particular is a useful predictor of coarse vegetation properties such as the
distribution of biomes or vegetation types (Stephenson 1990; Neilson 1995) and a
component of many hydrologic and biogeochemical models. This biophysical
grounding for the relationship between fire and climate is potentially more climati-
cally appropriate than indices representing modes of ocean-atmosphere interactions
for the analysis of fire-climate relationships and their consequences at multiple
scales. Persistent ocean-atmosphere variation (such as PDO and ENSO), while an
important part of the climate system, varies through time and regionally in the
degree to which it controls climate variables that directly affect the probability of
fire ignition, spread, and ultimately area and severity. Large-scale circulation pat-
terns and their influences on regional climate are increasingly uncoupled from local
climatic variation across landscapes; water balance variables provide the potential
to integrate across multiple scales.

We propose that water-balance variables should capture the climatic mecha-
nisms that limit and facilitate fire, likely via their effects on fuels (Littell et al.
2009a). The fine fuels that carry fires are dynamic in terms of their moisture status,
and fuel availability fluctuates with weather, but as resistance to high frequency
(hourly or daily) fluctuations in water balance increases with fuel size, monthly and
seasonal water balance should more closely approximate the moisture status of
fuels. For live plant tissues, as soil water is depleted, plants have less water to draw
on to meet the demands of transpiration. Tissue water should be reduced as
droughts progress and DEF increases. PET may also provide a good indication of
moisture content of small-diameter dead fuels during the fire season because its
aggregated value over the fire season should track the frequency of days when small
diameter fuels can burn even though PET varies greatly at daily and sub-daily time
steps. In contrast, AET, and therefore DEF, cannot be mechanistically related to
dead fuel moisture, because its calculation considers water loss from the soil via
transpiration. However, DEF may provide an indication of dead fuel moisture
because it incorporates both the evaporative demand associated with PET and the
supply of precipitation that is one factor controlling AET. Seasonally aggregated
AET or DEF may also indicate how early in the year small-diameter surface fuels
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become sensitive to atmospheric variability. For example, years with early snow-
melt are more likely to have increased DEF and in these years local meteorological
control of surface fuel availability will also occur earlier. Finally, in ecosystems
with predominately fine and medium fuels, the production of fuels is partially con-
trolled by favorable climate for plant growth in the year(s) preceding fire, and lower
DEF (either less PET or increased AET or both) may lead to more abundant fuels
that subsequently become available.

We suggest that the same ecohydrological principles (e.g., Milne et al. 2002)
should apply to vegetation, water, and fire at multiple scales. At finer scales, local
controls on water balance (slope, aspect, terrain shading, and soil properties) are
superimposed on regional controls (climate, orographic, and elevation patterns),
but the overall effect should remain; where fuel is not limited, zones of greater
DEF are more likely to burn. This was clearly demonstrated in modeled data gen-
erated by Miller and Urban (1999). By showing that similar theoretical constructs
govern the variation in hydrology, vegetation, and fire, we may also facilitate the
incorporation of fire into ecohydrological models that operate at landscape scales.
This chapter thus provides a mechanistic basis for applying climatically driven
water-balance fire controls to the landscape ecology of fire. In this chapter, we
explore the utility of water-balance components as predictors of the area burned
by fire within coarse vegetation types of the Pacific Northwest and the northern
Rocky Mountains, with the eventual goal of a scalable approach to climatic facili-
tation and limitation of area burned, one that is applicable not only to ecoregions
but also to watersheds or other landscapes in which water relations can be linked
to the contagious properties of fire.

5.2 Methods: Identifying Relationships Between Water
Balance and Area Burned

We extend the work of Littell et al. (2009a), which established temperature and
precipitation relationships for area burned in ecoprovinces in the western U.S., in
two ways. First, we investigate PET, AET, and DEF deficit as potential climate
predictors instead of temperature and precipitation. Second, we partition the cli-
matic control of area burned by ecosystem vegetation more finely by using ecosec-
tions (Bailey 1995) in the Pacific Northwest and northern Rocky Mountains
(Table 5.1). Ecosections are reasonably homogeneous geographic areas that have
similar biophysical and orographic properties (Bailey 1995), and also have coarsely
similar vegetation across groups of ecosections within an ecoprovince. We focus on
the climatic limitation and facilitation of fire in each ecosection within the U.S.
Columbia River Basin (CRB), including coastal areas that drain to the Pacific
Ocean (Fig. 5.1, Table 5.2). These ecosections range in vegetation type from cool,
moist, temperate maritime forests along the Washington and Oregon coasts to
rainshadow desert in the interior Columbia Basin, with intermediate montane
forest, subalpine forest, and shrub-dominated ecosystems.
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Table 5.1 Bailey (1994) Ecosections used in this study
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Ecoprovince Ecosection Ecosection code
Cascade Mixed Forest— Eastern cascades M242C
Coniferous Forest—Alpine Oregon And Washington Coast M242A
Meadow Ranges
Western Cascades M242B
Great Plains—Palouse Dry Steppe Palouse Prairie 331A
Intermountain Semidesert Columbia Basin 3421
High Lava Plains 342H
Northwestern Basin And Range 342B
Owyhee Uplands 342C
Snake River Basalts 342D
Middle Rocky Mountain Beaverhead Mountains M332E
Steppe—Coniferous Bitterroot Valley M332B
Forest—Alpine Meadow Blue Mountains M332G
Challis Volcanics M332F
Idaho Batholith M332A
Northern Rocky Mountain Bitterroot Mountains M333D
Forest—Steppe—Coniferous Flathead Valley M333B
Forest—Alpine Meadow Northern Rockies M333C
Okanogan Highlands M333A
Pacific Lowland Mixed Forest Willamette Valley and Puget 242A

Trough

Fig. 5.1 U.S. Columbia River Basin (outlined in yellow) and associated Bailey (1995) ecosections.
Ecosection names and climate variables are summarized in Table 5.1
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We collected records of the annual area burned for management units in the
CRB study region from online interagency fire datasets (FAMWEB, National Fire
and Aviation Management 2007) for federal lands managed by the U.S. Forest
Service, National Park Service (NPS), Bureau of Land Management (BLM), and
Bureau of Indian Affairs (BIA). Area-burned data were available from 1970, but
records between 1970 and 1980 were inconsistent within or between agencies (indi-
cated by years recorded as zero when fires were known to have occurred in the
management units), so we restricted our analyses to the period 1980-2006, which
was the last complete year available at the time of analysis. We removed duplicate
fire records (cross-agency listings of fire events) and obvious errors (e.g., fires
reported in the wrong state for a known management unit), and compiled a database
of the area burned in each year in each agency unit (National Forest ranger districts,
NPS parks, BLM districts, and BIA reservations). We then aggregated the indi-
vidual unit time series into the ecosections that contain them. This yielded a
27-year time series for each of the 19 CRB ecosections.

We developed climate variables for each ecosection (Table 5.2) from gridded
observed data and output from the Variability Infiltration Capacity (VIC) hydro-
logic model (Liang et al. 1994; Hamlet and Lettenmaier 2005; Elsner et al. 2010).
The VIC driving data are gridded (1/16-degree grid, Elsner et al. 2010) observed
climate data derived from National Climatic Data Center Cooperative Observer
network daily station data as the primary sources for precipitation and temperature
values. These data are adjusted by a method described by Hamlet and Lettenmaier
(2005), which corrects for temporal inhomogeneities in the raw gridded data using
a set of temporally consistent and quality-controlled index stations from the U.S.
Historical Climatology Network. This approach eliminates spurious trends in the
gridded historical data from inclusion of stations with records that are shorter than
the length of the gridded data set. The gridded estimates are then adjusted for oro-
graphic effects using the PRISM climatology for 1971-2001 (Daly et al. 1994,
2002) following methods outlined in Maurer et al. (2002). The VIC model then
uses these gridded outputs and additional parameter files for topography, vegeta-
tion, soil conditions, and other factors to calculate hydrologic variables such as
snow-water equivalent, runoff, evapotranspiration, and streamflow. In this chapter,
we use ecosection-averaged VIC monthly or seasonal temperature (T), precipita-
tion (PPT), and several derived variables, including potential evapotranspiration
(PET), actual evapotranspiration (AET), and water balance deficit (DEF, or PET-
AET). VIC calculates PET with a Penman-Monteith equation with canopy resis-
tance set to zero. AET is calculated with the same equation, but with canopy
resistance as a function of minimum canopy resistance, soil moisture stress, and
leaf area index (Liang et al. 1994). In a few models, we also used April 1 snow
water equivalent (SWE). We expected statistical models of the interactions between
temperature and precipitation should be less effective than the physically meaning-
ful integration represented by water-balance deficit, and that both approaches are
more proximate to fire than ENSO or PDO, which cause variation in regional
climate.
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5.2.1 Data Analysis

Using the complete array of monthly and annual predictor variables in regression
would have had an unacceptably high probability of generating spurious relation-
ships with only 27 years of data. Yet multivariate data reduction techniques, such
as principal components analysis, would have confounded our ability to examine
specific climatic variables, leaving only the aggregate ability to explain variance in
the area-burned time series. To minimize the probability of spurious relationships
and still identify the best climate predictor variables, we relied on an exploratory
analysis using Pearson product-moment correlations between monthly T, PPT, PET,
AET, and DEF variables and log-transformed ecosection area-burned time series.
This helped determine if seasonal aggregations of the variables might better explain
the variance in area burned than monthly means that would be correlated and intro-
duce collinearity into multiple regression models. When several months had com-
parable sign and magnitude and significant correlations with area burned, we
grouped them into seasonal variables. We also used these correlations as first-pass
estimates of the best explanatory variables in multiple regression models of area
burned as a function of climate.

We used seasonal or monthly climate variables as predictors in multiple linear
regression models of area burned for each ecosection. We iteratively entered the
most highly correlated seasonal or monthly variables (and in many cases, their
interactions) into predictive models and used Akaike’s Information Criterion (AIC,
Akaike 1974) to compare nested models. When the AIC could not be reduced fur-
ther by addition of significantly correlated variables, we considered the model final.
We retained predictors only if p(t)<0.05, unless subsequent interactions required
the retention of predictors with p(t)>0.05 for estimation of main effects.

To better understand the spatial arrangement of climatically driven deficit and its
potential role in area burned, we used longer-term data (Littell et al. 2009a) on area
burned to define years to include in composite maps of climatic variables for the
10% highest and 10% lowest fire years. Specifically, we calculated the total annual
area burned in Washington, Oregon, Idaho, and Montana from 1916-2006 and used
these values to rank years from lowest to highest. We then used VIC estimates of
PET and AET to develop gridded maps of water balance deficit for the composite
mean of the low and high fire years.

5.3 Results

The mean annual and percentage area burned by fire varied by orders of magnitude
across the 19 ecosections (Table 5.3). Areas of large human population or relatively
high agricultural or other human management had low median and mean areas
burned (Puget Trough and Willamette Valley, Flathead Valley, Columbia Basin sections),
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Table 5.3 Annual area burned statistics for 1980—-2006 by ecosection code’

Standard Standard

Ecosection  Area Mean deviation Median Mean deviation Median
code (10°ha)  (ha) (ha) (ha) (%) (%) (%)
M242C 5.8 26909 35555 7630 0.5 0.6 0.1
M242A 4.1 302 486 127 0.0 0.0 0.0
M242B 4.0 938 2032 198 0.0 0.1 0.0
331A 1.7 1605 3463 348 0.1 0.2 0.0
3421 5.5 177 229 74 0.0 0.0 0.0
342H 2.1 6789 8080 3887 0.3 0.4 0.2
342B 11.5 27319 26211 17763 0.2 0.2 0.2
342C 7.4 71331 63089 60014 1.0 0.9 0.8
342D 2.7 41645 55962 15800 1.5 2.1 0.6
M332E 5.1 8474 33847 740 0.2 0.7 0.0
M332B 2.0 8989 25928 317 0.4 1.3 0.0
M332G 4.5 20954 27802 2459 0.5 0.6 0.1
M332F 1.4 3751 7392 616 0.3 0.5 0.0
M332A 4.3 35350 69318 10713 0.8 1.6 0.2
M333D 33 3926 11149 200 0.1 0.3 0.0
M333B 2.1 4000 11121 70 0.2 0.5 0.0
M333C 1.1 8405 26920 217 0.8 2.4 0.0
M333A 34 18949 23593 11045 0.6 0.7 0.3
242A 3.9 12 28 2 0.0 0.0 0.0

'See Table 5.1 for code definitions

whereas Intermountain basin and range and drier forest vegetation types had high
median and mean areas burned (Owyhee Uplands, Northwestern Basin and Range,
Snake River Basalts, and Okanogan Highlands). The standard deviation was
roughly proportional to the mean for most of the drier ecosections, but increased to
two, three, or four times the mean in the wetter forested ecosections.

Interannual area burned varied substantially within ecosections and five (M242C,
342C, 342D, M332G, M332A) of the 19 ecosections contributed 68% of the annual
area burned in regional fire years (Table 5.3). The regional time series was not
indicative of a significantly large trend because the interannual variability in area
burned was so large. However, there was a positive increase of approximately
10,300 ha year' regionally averaged over the study period, although 2007 and 2008
data would probably decrease the observed trend (Fig. 5.2).

Correlation analyses indicated that water balance variables (PET and AET) were
marginally more frequently correlated with area burned than temperature and pre-
cipitation (significant r = +0.323 for n=27, df=25, t>1.708, a=0.05) (Fig. 5.3).
Summer (JJA) precipitation (negative) and temperature (positive) were correlated
with annual area burned in most ecosections, and summer (JJA) correlations with
PET were consistently positive whereas late-summer (JAS) correlations with AET
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