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Foreword

The Wildland Fire Smoke Science Assessment documents the state of smoke-related
science from past to present and provides insights into future needs. The assessment
was motivated, at least in part, by recent wildfire years with substantial smoke impacts
in the continental USA. From concept to publication, heavy smoke from wildfires and
bushfires has been observed in Alaska, Canada, South America, Australia, Green-
land, Europe, and Siberia. Transport of the smoke from these wildfires sent emissions
around the world and exposed millions of people to unhealthy levels of fine particu-
lates and other pollutants for extended periods. These recent events have had signif-
icant effects on the broad field of smoke science and future directions for research
and collaboration.

In the USA, particulate matter with aerodynamic diameter < 2.5 wm (PM; )
from all sources, excluding wildland fire (wildfire and prescribed fire), has been
declining over the last several National Emissions Inventories conducted by the US
Environmental Protection Agency (USEPA). In many places, wildland fire smoke
has displaced all other sources, including mobile and industrial sources, as the most
significant source of PM; 5, accounting for 43% of total PM, 5 in the USA in 2017.

The last five years have seen greater focus on smoke and its effects on a range of
social values including impacts on mortality, morbidity, and susceptibility to infection
and disease; impacts on the economies of communities adjacent to wildlands; and
disruption of life when contending with smoke for weeks at a time. While the USA
grapples with these mostly adverse smoke effects, the ecological need for periodic
fire also highlights the need for research that can help to understand how to balance
the objectives of resilient landscapes with the desire for good air quality.

In recent years, the severity and duration of wildfire smoke impacts across
the western coast of the USA has been growing: 2020 saw numerous 24-hour
periods of PM, 5 above USEPA thresholds considered healthy, which led to media
and researchers claiming thousands of individuals had potentially died as a result
of wildfire smoke. The year 2020 also brought significant focus on the poten-
tial compounding effects of air pollution on human health during the COVID-19
pandemic, especially for respiratory health and the potential adverse effects of long-
term air pollution on increased susceptibility and severity of COVID-19 infections.
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The pandemic also increased public awareness of the importance of personal protec-
tive equipment to protect respiratory health (e.g., N95 filtering face respirators).
Concerns about the combined effects of smoke exposure and COVID-19 also elevated
the issue of wildland firefighter health within the fire management community.

Growing recognition of wildfire smoke impacts has contributed to increased
research attention from federal agencies, universities, and the National Academy
of Sciences which have explored wildland fire smoke since the 1970s. This growth
in interest and research has been building for the last 20 years. Initially, a by-product
of other fire science endeavors, smoke science has emerged as a discrete scientific
focus, with stand-alone international symposia that draw worldwide attention and
engagement. This growth in smoke research will need coordination for improved
data sharing mechanisms, technology transfer, and consensus on research needs and
priorities.

US Forest Service Research & Development has been a leader in the development
of a substantial portion of the science found in the assessment. Initial investment into
smoke science as an agency began in the late 1960s and 1970s, a period of growing
awareness of the importance of environmental health. The commitment of the USA
to the value of clean air was encapsulated in the Clean Air Act of 1970 and the
formation of the USEPA in the same year. And with that awareness and national
environmental goal, the challenge of balancing the desire for clean air with the need
for use of fire for the health of many ecosystems in the USA became evident.

Historically, many wildland fire smoke research efforts have been driven by air
quality regulatory efforts to predict and manage prescribed fire smoke. The 1970s
was a busy period of research on prescribed fire smoke, and to some extent wildfire
smoke, including prescribed fire and wildfire activity levels, prescribed fire emissions
and smoke management, and how to reduce prescribed fire emissions. Emphasis was
placed on the prescribed fire side of the wildland fire equation based on a misguided
view that little could be done about wildfire smoke, which was perceived as “nat-
ural” and uncontrollable. National rules supported the idea that areas affected by
wildfire smoke should logically not be counted in the calculation of whether an area
was meeting National Ambient Air Quality Standards (NAAQS). This interpreta-
tion suppressed research on wildfire smoke and operational response for decades,
although the prescribed fire focus did provide tools that have recently had utility for
addressing wildfire smoke. The assessment highlights the need for future research
specific to wildfire smoke, as it has emerged as a serious health risk for the public
and firefighters.

Area burned by wildfire has grown since the 1980s, the result of decades of
fire suppression, increased fuel loads, and recent periods of severe drought. At the
same time, the reality of wildfire smoke as a growing public health issue has also
spawned both greater focus and greater collaboration. In the 1970s, the intersec-
tion of prescribed fire smoke impacts and wildfire smoke impacts with the NAAQS
was virtually nil, because the standards were exceeded infrequently. However, the
cumulative impacts of multiple concurrent prescribed fires, and the need to avoid
nuisance impacts of any prescribed fire, began to drive development of regulatory
smoke management programs in the Northwest and Southeast, with other regions
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soon to follow. The research community also responded to this regulatory challenge
with Forest Service Research & Development leading the charge and working in
concert with the USEPA, a collaborative partnership that endures today.

A critical early driver of smoke research in the USA has been the multiagency-
funded Joint Fire Science Program (JFSP). Since its establishment in 1998, the JFSP
has funded 67 smoke-related research projects, with over $25 million invested in
smoke emissions, models, smoke perceptions, and firefighter smoke exposure. One
of the hallmarks of these projects has been the creation of new partnerships among
federal agencies and academia, thus helping develop new scientists in the field.
In addition, the JFSP regional Fire Science Exchange Network has helped to put
emerging smoke science into the hands of users and facilitate the transition of research
models into operational decision support tools, an important ongoing challenge as
noted in the assessment chapter on management needs.

Over time, smoke research has expanded to investigate smoke production and
dispersion, more closely address operational needs, and better understand the global
dynamics of smoke. Most of the recent large wildfire seasons around the world
have been captured on diverse remote sensing platforms and satellite systems; for
example, the global transport of wildfire emissions during the 2019-2020 bushfires
in Australia was clearly documented. This technology also provides support for
previously modeled worldwide mortality of 180,000 per year due to smoke from
biomass burning. Long-lived and aging smoke, which may have distinct health risks
compared to less aged smoke, has been recognized as a new scientific challenge.
Recognition of the need to reduce wildfire risk while allowing fire to fulfill its critical
ecosystem function is driving interest in greater use of prescribed fire. In turn, this has
raised interest in understanding how to manage smoke from prescribed fire, minimize
emissions when possible, and effectively communicate smoke concerns, from social
science and medical science perspectives.

Prioritizing research in the future will rely on fully understanding the state of
the science, as represented by this assessment, determining lines of research, and
then developing the resources and capability to execute new research efforts. This
assessment facilitates understanding of critical gaps in research regarding wildland
fire smoke impacts and notes the challenge of managing, quantifying, and mitigating
effects of prescribed fire smoke. It also underscores the importance of research on
wildfire smoke emissions, prediction of impacts, and public and firefighter health
effects as the USA begins to address climate change and its effects.

As land managers—federal, state, tribal, and private—struggle with addressing
the growing wildfire risks through fuels management and increased use of prescribed
fire, itincreases the importance of understanding how to minimize and mitigate smoke
effects on human health, especially for those most at risk, and prevent adverse smoke
effects to roadway visibility. In addition, while much of the smoke that the US public
and firefighters breathed in 2020 was from burning vegetation, consumption of fuels
was not limited to biomass; it also included human structures and infrastructure, with
more than 4,000 structures lost in Oregon alone. The research community is faced
with a challenge of understanding the constituents of this source of smoke and what
their effects are on humans through both local and downwind exposure. Motivated



viii Foreword

by almost continuous wildfire years and impacts on public health and the economies
of the rural and urban West, the U.S. Congress has also been engaging with questions
about wildland fire smoke, with hearings on wildfire risk, prescribed fire and fuel
treatments, and the effects of smoke. Issues and questions that emerge at the national
level will likely motivate further work on the health and economic effects of smoke
and how to best mitigate them.

In recent years, research has expanded into the sources, chemistry, and physics
of smoke, how smoke disperses, and the worldwide burden of smoke impacts,
including how wildfire smoke that spans the globe is a factor in climate change
as well as a source of short-term air pollution. The wheels are now in motion for
increased research funding and collaboration in multiple programs, such as the inter-
national multiagency and multi-academic institution development of the FIREX-AQ
aerial platform spearheaded by National Oceanic and Atmospheric Administration
and National Aeronautics and Space Administration, with support from the Forest
Service. The level of investment in this project and number of scientists from around
the world were unprecedented, as aircraft flew smoke plumes across the USA in
2019. The Forest Service has also stepped into a “big science” role with the ongoing
Fire and Smoke Model Evaluation Experiment, which brings individuals together
from academic institutions and federal agencies across the country to analyze data
during active research burns. This large-scale experiment is ongoing and will help
advance smoke science through sharing of data and transfer of new information to
users.

The need for more extensive understanding of human health effects, both phys-
iological and mental, of smoke exposure is also coming into focus. Mental health
effects of smoke were not a topic of discussion until recently, but months of dark
skies, as experienced in the western USA for multiple summers, have prompted
many new questions. Concerns for outdoor workers who must conduct their work in
the high smoke levels downwind of recent wildfires have generated new protective
regulations and the need for improved smoke forecasting to reduce exposure. This
concern for health impacts of smoke is also driving greater investment in addressing
wildland fire personnel exposure and response.

A number of scientific efforts are addressing the need for better wildland fire
smoke information. Investments in smoke modeling, predictions, and forecasting
have increased, both as a research area and in support of wildfire response efforts.
Ensuring that the public is apprised of the risks from high levels of smoke in the appro-
priate language and with clear guidance and availability of information is critical.
Science to inform outreach efforts that help the public to take appropriate protective
actions could keep many branches of research and agencies engaged for years to
come. International efforts such as the World Meteorological Organization’s Vegeta-
tion Fire and Smoke Pollution Warning and Advisory System, including its regional
smoke modeling hubs, expand this concept across the globe, matching the scale of
the challenge of wildfire and smoke.

The assessment also documents growth in technology and scientific advance-
ment of the field of smoke science associated with collaborations and investments
worldwide. This work has provided a basis for today’s smoke science and operational
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smoke management efforts. The impact of technology has progressed rapidly over the
last 10 years, building on the foundation of older science with new and more powerful
analytical approaches. This is especially evident in the smoke emissions field with
recent research efforts utilizing novel ground-based technology, unmanned aerial
vehicles, and aerial platforms that can track smoke for many kilometers downwind.

Much of the science found in the pages of this assessment will be integral to
meeting the domestic and global challenge of balancing the fire needs of natural
ecological systems with a world striving to balance carbon, greenhouse gas emissions,
and clean air objectives. Effective emission reduction techniques and accurate smoke
impact forecasting will be critical to meet the challenge of smoke management in
a warmer climate. Improving our ability to translate smoke science into operations
and to inform policy is urgently needed.

There is no shortage of research and management questions in all chapters of the
assessment. Maintaining the many collaborations and partnerships of agencies and
academia documented here will provide a foundation for answering these questions
and informing public policies, management directions, and fire operations. Wildland
fire smoke science and its many facets have developed into a new and important
research field, one at the front and center of the world stage.

Peter W. Lahm

Fire & Aviation Management
State & Private Forestry,
U.S. Forest Service
Washington, DC, USA
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Chapter 1 ®)
Assessing the State of Smoke Science e

Daniel A. Jaffe, David L. Peterson, Sarah M. McCaffrey, John A. Hall,
and Timothy J. Brown

Abstract Recent large wildfires in the USA have exposed millions of people to
smoke, with major implications for health and other social and economic values.
Prescribed burning for ecosystem health purposes and hazardous fuel reduction
also adds smoke to the atmosphere, in some cases affecting adjacent communities.
However, we currently lack an appropriate assessment framework that looks past the
planned versus unplanned nature of a fire and assesses the environmental conditions
under which particular fires burn, their socio-ecological settings, and implications
for smoke production and management. A strong scientific foundation is needed to
address wildland fire smoke challenges, especially given that degraded air quality
and smoke exposure will likely increase in extent and severity as the climate gets
warmer. It will be especially important to provide timely and accurate smoke informa-
tion to help communities mitigate potential smoke impacts from ongoing wildfires, as
well as from planned prescribed fires. This assessment focuses on primary physical,
chemical, biological, and social considerations by documenting our current under-
standing of smoke science and how the research community can collaborate with
resource managers and regulators to advance smoke science over the next decade.
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1.1 Recent Trends

Data from the National Interagency Fire Center show that annual area burned by
wildfires in the USA has increased in recent decades (NIFC 2021). Smoke generated
from these fires is of particular concern because it is harmful to human health and can
have significant economic implications for nearby communities. In recent years, air
quality impacts due to wildfires in the USA have exposed tens of millions of people to
elevated and sometimes hazardous concentrations of particulate matter, specifically
particulate matter with aerodynamic diameter <2.5 wm (PM; 5), the smoke pollutant
of most concern in relation to human health (Chap. 7).

Smoke can affect broad geographic areas, well beyond the actual wildfires. In
2017, numerous large wildfires in the western USA generated smoke plumes that
were transported across North America and resulted in PM; 5 concentrations that
reached unhealthy to hazardous levels (based on the USEPA Air Quality Index(AQI)
in many areas (Fig. 1.1). Although US air quality has been improving for decades,
largely due to implementation of the Clean Air Act, the effects of wildfires in the past
decade have been acute, and in some regions, wildfire smoke has led to a reversal
in the general trend toward cleaner air (McClure and Jaffe 2018). Periodic pulses of
high PM; 5 from smoke are typically much higher than ambient PM, s concentrations
otherwise seen in both rural and urban areas. In 2017 and 2018, many cities in the
western USA experienced their all-time highest PM, s concentrations due to the
number of wildfires burning simultaneously (Laing and Jaffe 2019). Very high PM; 5
concentrations can also occur in the southeastern USA, although less frequently than
in the western USA.

Although most smoke is associated with wildland fires' within the USA, fires
in other countries can also affect US air quality. In 2017, high PM, 5 concentra-
tions in the Pacific Northwest were associated with large fires in British Columbia,
Canada (Laing and Jaffe 2019). These same fires were associated with smoke trans-
port to Europe and, locally, strong thunderstorm—pyrocumulonimbus activity, which
injected smoke into the stratosphere (Baars et al. 2019). In addition, large fires in
Quebec, Canada, have significantly affected air quality in the northeastern USA
(DeBell et al. 2004); smoke from fires in Mexico and Central America can affect
Texas (Mendoza et al. 2005; Kaulfus et al. 2017); and fires in Siberia can affect air
quality in the western USA (Jaffe et al. 2004; Teakles et al. 2017).

! Throughout this document “wildland fire” is used to encompass both wildfires and prescribed fires.
The individual terms are used only when they specifically refer to that specific source of smoke.
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Fig. 1.1 Observed smoke on September 4, 2017. NASA Worldview (https://worldview.earthdata.
nasa.gov) image (upper) showing fire hotspot detections from the VIIRS and MODIS satellite
instruments, along with visible satellite imagery from the VIIRS instrument between 1200 and
1400 local time. Bright white areas are clouds; grayer areas are smoke. 24-h average PM3 5, shown
as the corresponding air quality index (AQI) category colors (lower), based on surface PM sensors
collected in the USEPA AirNow system (https://www.airow.gov) (From Jaffe et al. (2020))

These increasingly broad and adverse effects of wildland fire smoke have led to
growing interest in (1) assessing the state of science in relation to smoke and (2)
improving smoke science in order to develop information and tools that can better
inform management decisions (e.g., forest treatments and prescribed burning) and
mitigate potential smoke impacts of future wildland fires.


https://worldview.earthdata.nasa.gov
https://www.airow.gov
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1.2 Environmental and Social Context

Wildland fire is an essential ecological process that influences the structure and func-
tion of most North American ecosystems. The scale of fire phenomena differs across
the nation, with consequences for both emissions and effects of smoke. Wildland
fire smoke can affect at least some part of the USA throughout the year (Fig. 1.2). In
winter, fires are found mainly in the Southeast, typically as prescribed, low-intensity
understory burns to rejuvenate grasses and forbs and prepare seed beds for new tree
seedlings, as well as reduce understory growth in pine forests. As spring approaches,
fire detections move north and west, with increased prescribed fires on rangelands
in the central USA. In Alaska, the wildfire peak is typically in May and June, and
summer is the peak wildfire season for the western USA. Late fall can be a time of
many wildfires in California and the Southeast. This progression of fire throughout
the seasons and ecosystems across the USA has implications for the overall quantity,
duration, and human impacts of the emitted smoke (Table 1.1).

Fig. 1.2 Progression of fires throughout the year using 2017 MODIS hotspot fire detections. (Source
U.S. Forest Service, from Jaffe et al. (2020))
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Table 1.1 Summary of wildland fire for different regions in the USA. Adapted from Jaffe et al.
(2020)

Region? Typical fire Wildfire characteristics
season

Alaska May-Jun Mostly lightning- caused; high interannual variability
in fire depending on the occurrence of dry weather;
largest fires >100,000 ha

Eleven western Jun—Sep Mostly lightning- caused in mountains; high fuel

contiguous states, loadings in many dry forests can facilitate intense

minus California, fires; largest fires >100,000 ha

Arizona, and New

Mexico

California Oct—Nov Many lightning- caused in Sierra Nevada, mostly

Jun—Sep human-caused elsewhere; high fuel loadings in many

dry forests can facilitate intense fires; largest fires
>100,000 ha

Arizona and New | May—Jun Combination of lightning- and human-caused; fires

Mexico often driven by interannual variation in fuel
production (e.g., grasses); largest fires >100,000 ha

Great Plains Apr-Jul Mostly human- caused, some lightning-caused;
largest fires are rarely >10,000 ha

Midwest and Apr—Jun Mostly human- caused; dependent on dry spring

Northeast weather; fires are small

Southeast Feb—Nov Mostly human- caused, some lightning-caused;
largest fires are usually <10,000 ha, although fires in
2016 burned more than this

4 Hawai ‘i and USA-affiliated areas are not included because they comprise a very small portion of
fire and smoke occurrence

Humans have a long history of using fire and it is difficult to separate human
influence from the natural occurrence of fire on the landscape (Pyne 1997). For
centuries, Native Americans used fire as a tool for multiple purposes, including
agriculture, managing wildlife habitat and hunting grounds, and cultural practices.
As a result of lightning fires and Native American burning, as well as agricultural
clearing fires by European settlers, dense and extended periods of smoke were a fairly
common occurrence prior to 1900 in many places in the USA. In the 1800s, smoke
from wildland and agricultural fires in Oregon hindered navigation on the Columbia
River and was credited with contributing to increased illness (Pyne 1997).

The practice of suppressing most wildfires was introduced in the late 1800s.
Over time, this policy has contributed to elevated fuel loadings that are one factor
contributing to increasing fire size in recent years (Ryan et al. 2013). Fire suppression
(and other forms of fire exclusion [e.g., agriculture]) have meant that up until about
1990, less fire has occurred on the landscape than in pre-European settlement times
(Leenhouts 1998), resulting in less smoke in the air (Brown and Bradshaw 1994).
Recent episodes of smoke across the USA in the last two decades have been driven by
large wildfires, and this may be, to some extent, a return to conditions that have not
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existed since the implementation of widespread fire suppression. A key challenge for
forest managers therefore is how to address the fuel accumulation that has occurred
as a result of fire suppression (Calkin et al. 2015), while addressing the potential
impacts of smoke on a growing human population.

Although 98% of wildfires are currently suppressed before reaching 120 ha
(Calkin et al. 2005), annual area burned by wildfires is increasing (Dennison et al.
2014). In the decade between 1991 and 2000, wildfires burned an average area of
1.46 million ha y‘1 , whereas in the most recent decade (2011-2020) wildfires burned
an average area of 3.04 million ha y~! (NIFC 2021). This is mainly due to an increase
in large fires that are difficult to control (Dennison et al 2014).

One study has suggested that climate change is contributing to the increased size
of wildfires in the western USA (Abatzoglou and Williams 2016), although this study
did not consider how fuels and other factors affect wildfire (Dennison et al. 2014).
Rising temperatures affect fuel moisture and the length of the fire season (Jolly et al.
2015; Freeborn et al. 2016; McKenzie and Littell 2017). The effects of climate change
on area burned will differ by ecosystem and fuel conditions (Littell et al. 2009), with
larger areas burned by wildfire in some regions and longer durations of poor air
quality due to smoke (Pechony and Shindell 2010; Vose et al. 2018). Changes in
fuel composition, loading, and areal extent (Chap. 2) may lead to regional variability
that alters the effects of climate change, especially after mid-century. For example, if
large wildfire patches comprise an increasing proportion of the landscape, they may
limit fire spread.

Prescribed fire—planned ignition in accordance with applicable laws, policies,
and regulations to meet specific objectives (NWCG 2020)—is an important land
management tool that can be used for several management objectives including fuel
reduction and ecosystem health. All potential smoke production from such burning
must be considered in the context of human health and air quality standards (Chap. 7).
Prescribed fires occur under environmental conditions more amenable to fire control
(Chaps. 2 and 8) and, depending on the state, may need to be permitted under a
smoke management plan to ensure that smoke exposure will not exceed air quality
standards or affect sensitive populations.

The ability to plan for when and where a prescribed burn will happen provides
some control over the duration, overall amount, and spatial extent of smoke produc-
tion, although unexpected atmospheric conditions (e.g., a change in wind direc-
tion) can result in smoke dispersion into nearby communities (Chap. 4). When
a large number of prescribed fires are planned to occur simultaneously, they can
create accumulated smoke impacts, making collaboration among burners advisable
(Chap. 8).

A final challenge in relation to wildland fire smoke is that wildland fires do
not occur in a vacuum. Rather, they occur in landscapes with expanding human
populations, increasing the potential for social impacts for both rural and urban areas.
Although health impacts are usually the primary concern, smoke can adversely affect
a range of social values beyond health (e.g., transportation and tourism) (Chap. 7)
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and affect areas far beyond the fire perimeter. For example, in 2016, the Chimney
Tops fire near Gatlinburg, Tennessee, a major tourism center, caused 15 deaths and
burned 2500 homes. It also exposed large populations beyond the immediate area to
severely degraded air quality for weeks: monitors in many cities in the southeastern
USA had daily PM, 5 averages that exceeded 100 g m~>, a level of exposure that
greatly increases risk for people with compromised respiratory function and other
medical conditions (Jaffe et al. 2020; Chap. 7). In addition, fires that burn human
infrastructure may produce toxins from building materials into the smoke (Chap. 6).

1.3 Overview of This Assessment

This assessment builds on previous integrated analyses of wildland fire and smoke
(e.g., Sommers et al. 2014). To better address the growing societal impacts discussed
above, an improved understanding of smoke dynamics is needed to more accurately
predict the location, extent, and likely effects of smoke, as well as how to effectively
mitigate any adverse effects. Because understanding how fire influences air quality is
a complex process due to high variability among fires in the quantity and composition
of emissions, this will require the compilation of knowledge from diverse scientific
disciplines.

Emission characteristics vary as a function of the amount and type of fuel, meteo-
rology and burning conditions (Chap. 2), fire behavior (Chap. 3), and smoke dispersal
(Chap. 4); therefore, emissions (Chap. 5) for individual fires are often uncertain
and difficult to predict. In addition to PM; s, smoke contains numerous gaseous
compounds, some of which are harmful to people, including nitrogen oxides, carbon
monoxide, ozone, methane, and hundreds of volatile organic compounds (Chap. 6).
This chemical complexity makes wildfire smoke different from typical industrial
pollution. In addition, once emitted, wildland fire smoke undergoes chemical trans-
formations in the atmosphere, which alter the mix of compounds and generate
secondary pollutants, such as ozone and secondary organic aerosols (Chap. 6); some
of these secondary compounds appear to be more toxic than the primary emissions
(Wong et al. 2019).

Ultimately, given that the social impacts of smoke are the foundation for these
scientific needs, a better understanding of the full range of human health and
economic costs of smoke is needed (Chap. 7). Complex interactions among wildland
fires, climate change, and other factors mean that the different disciplines of smoke
science need sufficient integration to ensure credible and consistent projections of
physical phenomena and human impacts through space and time. Clear linkages
between what resource managers and regulators need and what is being produced
through scientific research is also critical (Chap. 8).

The technical capability of smoke measurement and modeling has increased
significantly over the past decade. Our understanding of acute human health effects
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has also increased, partially in response to big smoke events and partially in response
to concerns about effects on wildland firefighters who are exposed to smoke for weeks
at a time during the course of their work. This scientific knowledge is encouraging,
but greater accuracy is needed in all aspects of smoke science to better mitigate future
health and economic impacts.

To that end, we are now at a critical point in the development of smoke science.
Several large-scale field projects, focused on comprehensive measurements and
modeling (detailed in subsequent chapters) have been recently completed or will
be completed within the next few years (e.g., FASMEE; Prichard et al. 2019).
These experiments include simultaneous satellite-, aircraft-, drone-, and ground-
based sensors which, along with fuel measurements, should significantly improve
our knowledge about a number of smoke phenomena.

Accompanying this potential wealth of data will be the need to develop new
assessment frameworks through which we can compare and evaluate characteristics
of different types of fires, their smoke consequences, and opportunities for planning
and managing fires to reduce smoke impacts. However, this information will be mean-
ingful only with a better understanding of the health and economic effects of smoke
and identification of which actions most effectively mitigate those effects. Williamson
et al. (2016) articulated the principles of a potential framework for guiding scientific
and management needs associated with fire and smoke, but more effort is needed to
develop this framework.

Poised on the cusp of a new wave of technically advanced smoke research and
a surge in new data, it is imperative that we summarize the current state of science
for wildland fire smoke as a foundation for integration of new information. The
subsequent chapters of this book assess that state of science as follows:

Fuels and consumption (Chap. 2)

Fire behavior and heat release (Chap. 3)

Smoke plume dynamics (Chap. 4)

Emissions (Chap. 5)

Smoke chemistry (Chap. 6)

Social Considerations: Health, Economics, and Risk Communication (Chap. 7)
Resource manager perspectives on the need for smoke science (Chap. 8).

Chapters 2 through 6 focus on physical, chemical, and biological factors that affect
fire and smoke. Chapter 7 examines the existing knowledge on key impacts, partic-
ularly human health, all of which rely on a better understanding of the physical and
chemical nature of smoke, as well as on improved knowledge of human sensitivities
and responses to smoke to understand social and economic consequences. We note
here that the social costs of smoke are significant and include documented increases
in cardiovascular issues, premature mortality, and direct health costs in the billions
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of dollars annually (Fann et al. 2018). A summary of management and regulatory
issues related to smoke science is presented in Chap. 8, which can be used to inform
research and facilitate science-management collaborations in the future.

Although this assessment is, by necessity, divided into the primary components of
smoke science, authors of the above chapters have integrated among components as
much as possible. This assessment emphasizes recent discoveries, linking to projects
and lines of inquiry that are in progress or soon will be. Recommendations for future
research are included in each chapter.

This is an exciting time for the science and management of smoke in the USA
and other parts of the world, and we anticipate rapid progress in the years ahead.
As smoke will likely become a more pervasive issue in a warmer climate with more
extensive wildfires, it is also a critical time for the smoke science community to
continue to make progress. Our hope is that collaboration at all levels will improve
effectiveness of the research process and timeliness of integration into useful appli-
cations, ultimately benefiting the health and welfare of all communities affected by
smoke.
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Abstract Wildland fuels, defined as the combustible biomass of live and dead vege-
tation, are foundational to fire behavior, ecological effects, and smoke modeling.
Along with weather and topography, the composition, structure and condition of
wildland fuels drive fire spread, consumption, heat release, plume production and
smoke dispersion. To refine inputs to existing and next-generation smoke modeling
tools, improved characterization of the spatial and temporal dynamics of wildland
fuels is necessary. Computational fluid dynamics (CFD) models that resolve fire—
atmosphere interactions offer a promising new approach to smoke prediction. CFD
models rely on three-dimensional (3D) characterization of wildland fuelbeds (trees,

S. J. Prichard (<)
School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
e-mail: sprich@uw.edu

E. M. Rowell
Tall Timbers Research Station, Tallahassee, FL, USA
e-mail: erowell @talltimbers.org

A. T. Hudak
U.S. Forest Service, Rocky Mountain Research Station, Moscow, ID, USA
e-mail: andrew.hudak @usda.gov

R. E. Keane
U.S. Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
e-mail: robert.keane @usda.gov

E. L. Loudermilk - B. S. Hornsby
U.S. Forest Service, Southern Research Station, Athens, GA, USA
e-mail: elloudermilk @fs.fed.us

B. S. Hornsby
e-mail: benjamin.hornsby @usda.gov

D. C. Lutes
U.S. Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
e-mail: duncan.lutes @usda.gov

R. D. Ottmar
U.S. Forest Service, Pacific Northwest Research Station, Seattle, WA, USA
e-mail: roger.ottmar @usda.gov

This is a U.S. government work and not under copyright protection in the U.S.; 11
foreign copyright protection may apply 2022

D. L. Peterson et al. (eds.), Wildland Fire Smoke in the United States,
https://doi.org/10.1007/978-3-030-87045-4_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87045-4_2&domain=pdf
mailto:sprich@uw.edu
mailto:erowell@talltimbers.org
mailto:andrew.hudak@usda.gov
mailto:robert.keane@usda.gov
mailto:elloudermilk@fs.fed.us
mailto:benjamin.hornsby@usda.gov
mailto:duncan.lutes@usda.gov
mailto:roger.ottmar@usda.gov
https://doi.org/10.1007/978-3-030-87045-4_2

12 S. J. Prichard et al.

shrubs, herbs, downed wood and forest floor fuels). Advances in remote sensing tech-
nologies are leading to novel ways to measure wildland fuels and map them at sub-
meter to multi-kilometer scales as inputs to next-generation fire and smoke models.
In this chapter, we review traditional methods to characterize fuel, describe recent
advances in the fields of fuel and consumption science to inform smoke science, and
discuss emerging issues and challenges.

Keywords Fire behavior modeling - Fuel consumption - Measurement + Remote
sensing - Vegetation dynamics + Wildland fuels

2.1 Introduction

Fuels, topography, and weather comprise the classic fire behavior triangle (Chap. 3).
Fuels are the only one of the three variables that can be managed to influence fire
behavior before an ignition occurs. In their most basic form, wildland fuels are the
combustible biomass of live and dead vegetation. Because combustion of wildland
fuels generates heat and emits pollutants, fuels science is a critical foundation of fire
behavior and smoke modeling (Anderson 1976; Omi 2015; Keane 2019).

Along with weather and topography, characteristics of fuels that burn in a wild-
land fire event will drive fire spread, energy release, fuel consumption, and smoke
production (Ottmar 2014). For example, a dry grassland with continuous cover can
generate fast-moving fires with short-duration smoke production (Cook et al. 2016).
In contrast, dense mixed-conifer forests with deep organic soils can support crown
fires with large plume development followed by inefficient smoldering combustion in
coarse wood and organic soil layers associated with long-duration smoke production
(de Groot et al. 2007).

2.1.1 Understanding How Fuels Contribute to Smoke

A detailed accounting of how wildland fuels contribute to fire behavior and combus-
tion is thus fundamental for smoke model predictions. Smoke emissions estimates
are based on type and mass of fuel consumed, which is then used to determine smoke
composition through emission factors for specific fuel categories (Urbanski 2014;
Chap. 5). Each step of the smoke modeling process relies on source characterization
of the composition and biomass of fuels and consumption in a wildland fire event (see
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Fig. 5.7). Because fuels are dynamic over space and time, any effort to quantify fuels
must be informed by the ecology of live and dead vegetation (Mitchell et al. 2009;
Keane 2015). Of all variables involved in estimating smoke emissions, the amount
of available fuel and proportion that is consumed are often the highest sources of
uncertainty. Errors in estimates of available pre-burn fuels can create potentially
large errors when estimating emissions due to fuel consumption (Peterson 1987).
Reliable estimates of fuels also generally require more detailed site information than
is provided by remotely sensed imagery and classified vegetation cover and type.
For example, fuels that burn in a forest fire are often obscured by forest canopies
and are strongly dictated by past disturbances or management activities (Keane 2015;
Prichard et al. 2019a). Passive remote sensing imagery may provide operational maps
of forest cover but cannot quantify the amount, structure, or condition of sub-canopy
fuels that drive fire behavior and consumption (Keane et al. 2001).

Current geospatial datasets of wildland fuels, which are based on remote sensing,
generally have a high degree of uncertainty (e.g., LANDFIRE; Keane et al. 2006;
Reeves et al. 2006). The increased availability of remotely sensed datasets that enable
3D mapping of pre- and post-fire vegetation and fuels at multiple scales is contributing
to a rapid evolution in the field of fuel characterization and consumption (Louder-
milk et al. 2009; Wang and Glenn 2009; Hoff et al. 2019; Hudak et al. 2020). Next-
generation fuel characterization will need to be at scales and resolutions appropriate
for physics-based computational fluid dynamics (CFD) models that are capable of
resolving fire—atmosphere interactions, heat release, and smoke production (Loud-
ermilk et al. 2009; Rowell et al. 2016). Understanding the sources of uncertainty of
aggregating fine-scale fuel characterization and consumption to the coarser scales
used in smoke modeling and planning is an important area of study. For example,
distribution of downed logs and stumps may vary at fine spatial scales (Brown 1974;
Keane 2015), but reliable estimates of their consumption across burn units may be
critical to anticipating long-term smoke impacts (Chaps. 3, 5 and 6).

Reliable fuel characterization is also needed to guide prescribed burn planning
where fire managers need to take into account and mitigate potential smoke impacts
to communities (Lavdas 1996). As timber harvest, mechanical fuel reduction, and
prescribed burning modify fuels, fuel characterization after such treatments is critical
for assessing effectiveness and how these activities influence fire behavior and smoke
production (Reinhardt et al. 2008; Stephens et al. 2012).

Site-specific inventories of fuels and their predicted contribution to flaming and
smoldering phases of fire inform forecasts used by fire managers during wildland
fire events. If prescribed fire managers are aware of deep organic soil layers and
large amounts of coarse wood that could contribute to long-term smoldering and
low-buoyancy smoke production, they can model potential impacts and adjust burn
prescriptions and mop-up procedures to mitigate associated impacts to air quality. The
amount of consumption by combustion phase and duration of combustion (Ottmar
2014) directly influences smoke production, plume dynamics (Chap. 4), emissions
(Chap. 5), carbon fluxes, tree mortality, soil heating, and other vegetation dynamics
(Keane 2015). Furthermore, the amount and types of fuel consumed in flaming, smol-
dering and long-term smoldering (or glowing) phases of combustion are necessary
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for predicting emissions of specific pollutants (e.g., CO, PM; s) (Chaps. Sand 6) and
for anticipating smoke intrusions into communities (Peterson et al. 2018).

This chapter presents the current state of science for estimating the amount of
wildland fuel and consumption as related to smoke management and future research
needs. Topics covered include (1) an introduction to wildland fuels, (2) the current
state of science on fuel characterization and consumption, (3) a vision for fuel and
consumption science to inform smoke prediction, and (4) emerging issues and chal-
lenges in the field of fuel characterization and consumption research. Because source
characterization of wildland fuels is critical to predicting smoke impacts, reviewing
how to measure and map wildland fuel biomass and consumption provides useful
context for fire and fuels managers, smoke scientists, and policy makers. We also
review advances that are necessary for next-generation models of wildland fire
behavior and smoke.

2.2 Wildland Fuels

Wildland fuels are often characterized as fuelbeds that are stratified by structure,
continuity, and composition of biomass including tree canopies, snags, shrub stems
and leaves, grass and herbaceous vegetation, sound and rotten wood, needle and leaf
litter, and organic ground fuels (Ottmar et al. 2007). Numerous ecological processes
influence wildland fuel dynamics, but four are particularly important in governing
spatial and temporal distributions of wildland fuels (Keane 2015):

e Wildland fuels accumulate from the establishment, growth, phenology, and
mortality of vegetation (development). The rate of biomass accumulation, or
productivity of vegetation, is dictated by interactions of the plant species available
to occupy a site and the physical environment (climate, soils, and topography).

e QOver time, portions of living biomass shed or die and are deposited on the ground
to become dead surface fuels, termed necromass.

e Below- and above-ground necromass is eventually decomposed by microbes and
soil macrofauna.

e Disturbances, such as fire, insects, and disease, act on living and dead biomass
to change the magnitude, trend, and direction of fuel accumulation in space and
time.

These four processes interact to influence fuel development where the interactions
depend on the ecosystem and corresponding climate and disturbance regimes. For
example, live and dead vegetation characteristics often correlate to development and
deposition, whereas climate drives decomposition and disturbance (Keane 2008).
Vegetation is sometimes used as a surrogate for fuels (Keane et al. 1998; Menakis etal.
2000), but this assumption ignores the pivotal role of decomposition and disturbance
on fuelbed development.
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Wildland fuel properties and their distributions are a cumulative result of inter-
actions of the four above processes across multiple spatial and temporal scales that
create shifting mosaics of fuel conditions on fire-prone landscapes (Keane et al.
2012). The processes can also create heterogeneity in fuel loading and structure. For
example, loading (biomass per unit area; kg m~2) of fine woody debris can vary by
2-3 times its mean over a small (<10 ha) prescribed burn unit (Keane et al. 2012).

The spatial and temporal variability of wildland fuels can influence how fuel
consumption influences smoke emissions (Anderson 1976) and, in turn, how fuel
management influences fuel properties (Stephens et al. 2012). Because fuel dynamics
are so heterogeneous, robust fuel classifications, sampling methods, and geospatial
datasets are needed to improve predictions of fuel consumption and smoke production
(Parsons et al. 2010; Keane 2015). Spatial configuration of fuel characteristics is
needed for next-generation fire effects and behavior models that rely on 3D fuel
inputs and represent fire with CFD modeling (Linn et al. 2002; Mell et al. 2007,
King et al. 2008; Parsons et al. 2010). This variability, combined with uncertainty
of fuel sampling techniques, makes estimating accurate fuel loadings for smoke
prediction challenging.

2.2.1 Fuel Characteristics

The wildland fuelbed is generally divided into three vertical fuel layers including
canopy, surface, and ground fuels (Keane 2015). Canopy fuels are the biomass above
the surface fuel layer (>2 m high). Surface fuels generally include biomass within
2 m above the ground surface. Ground fuels are all organic matter below the ground
line, where the ground line is usually just below the litter (Oi soil horizon, slightly
decomposed) and include the Oe (moderately decomposed), and Oa (highly decom-
posed) soil horizons (collectively, “duff”) (Soil Science Division Staff 2017).! Each
fuelbed layer is composed of finer-scale elements called fuel strata and categories
(Fig. 2.1).

Fuel strata describe the vertical profile of the wildland fuelbed, whereas fuel
categories describe fuel types that are qualitatively and quantitatively defined for
specific purposes or objectives, such as fire behavior prediction (Table 2.1). For
example, the downed wood stratum often contains fuel categories including fine
wood (<8 cm diameter), coarse wood (>8 cm diameter), stumps, and piles (Riccardi
et al. 2007b). Fuels in the fine wood category are generally consumed during the
flaming phase and drive fire spread, whereas coarse wood burns during the flaming
phase of combustion but the majority of consumption is in smoldering combustion

! Ground fuels are defined as partially or fully decomposed soil organic matter. Organic soil horizons
often consist of three vertical layers: the newly fallen leaf litter (O1i), partially decomposed material
(Oe), and highly decomposed material (Oa). In the context of fuels, the Oi remains distinct from
the Oe and the Oa, which are often combined into what is commonly called “duff” or ground fuels
by fire and fuel managers. For this chapter, the Oi is referred to as leaf litter or litter, while the Oa
and Oe horizons are combined and referred to as ground fuels.
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Fig. 2.1 Vertical fuel strata in a wildland fuelbed [Drawing by Ben Wilson, from Keane (2015)]

that occurs long after the passage of the flaming front, contributing to long-duration
heat release and smoke (Albini 1976; Hyde et al. 2011).

Fuel strata and categories have specific physical and chemical properties, such as
bulk density, loading (mass per area, kg m~?2), surface area (m?), and heat content
(J kg1, all of which are important inputs to fire behavior and effects models and
descriptors of fuel characteristics (Chap. 3). The finest scale of fuel description is the
fuel particle, which is a general term for a specific piece of fuel that is part of a fuel
category. A fuel particle can be an intact or fragmented woody stick, grass blade,
shrub leaf, or pine needle. Fuel particles have the widest diversity of properties,
such as specific gravity (kg m™3), heat content (J kg~!), volume (m?®), and shape
(unit or quality here). The properties of fuel categories, strata and fuelbeds, are often
quantified from statistical summaries of properties of the particles that comprise
them, thereby a source of uncertainty. For example, the means of quadratic mean
diameter and surface area-to-volume ratio (m~") of all particles are often applied to
size classes of wood particles (e.g., Brown 1974).

Within any given fuel strata, component or particle, wildland fuels are also defined
as dead or live. Dead fuel is suspended or downed dead biomass (necromass), and
live fuel is the biomass of living organisms including vascular plants (trees, shrubs,
and herbs) and nonvascular plants such as mosses and ground lichens. The principal
reason for distinguishing between live and dead fuels is the difference in fuel moisture
dynamics that dictates the availability to burn, often called fuel condition. Both live
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Table 2.1 Common canopy, surface fuel, and ground fuel categories used for fire and smoke

modeling
Fuel stratum Fuel category Size Description
Canopy fuels
Canopy Tree crowns Fine branches (<6 mm
diameter) and dead
and live aerial foliage
Snags All burnable portions
of dead trees including
branches and stem
wood
Ladder fuels including Any fuel that serves as
vines, branches, tree a ladder between
regeneration surface and canopy
fuels
Surface fuels
Shrub Shrub crowns and All shrubby material | All burnable shrubby
stems less than 5 cm biomass with branch
diameter diameters less than
5cm
Herb Grasses and forbs All sizes All live and dead grass,
(non-woody forb, and fern biomass
vegetation)
Downed wood 1-h wood <0.6 cm diameter Detached small wood

(fine wood, twigs)

fuel particles within
2 m of the ground

10-h wood
(fine wood, branches)

0.6-2.5 cm diameter

Detached small wood
fuel particles within
2 m of the ground

100-h wood
(fine wood, branches)

2.5-8 cm diameter

Detached small wood
fuel particles within
2 m of the ground

1000-h wood
(logs, coarse woody
debris)

8 + cm diameter

Detached woody fuel
particles within 2 m of
the ground

Litter-lichen-moss

Litter All Freshly fallen
non-woody material
including leaves,
cones, pollen cones

Lichen All Lichen that grows on

the ground surface
(common in boreal
forests)

(continued)



18 S. J. Prichard et al.

Table 2.1 (continued)

Fuel stratum Fuel category Size Description

Moss (bryophyte) All Moss that grows on
the ground surface

(common in boreal
forests)

Ground fuels

Organic soil horizons | Oe horizon All Partially decomposed
Oa horizon and fully decomposed
biomass, including
decomposed litter and
peat

Basal accumulations All Accumulated organic
soil, bark slough, and
litter around older
trees

Fine woody debris (FWD) is a term often used for wood fuel particles <8 cm in diameter, and coarse
woody debris (CWD) refers to woody fuel particles > 8 cm in diameter

and dead fuel properties are governed by antecedent weather, but live fuel moistures
are primarily controlled by phenology, transpiration, evaporation, and soil water,
which differ among taxa and across regional climate (Jolly et al. 2014). In contrast,
dead fuel moisture is dictated by the physical properties of the fuel (e.g., size, density,
surface area) and their interaction with local climate, short-term weather dynamics
(wind, solar radiation and vapor pressure deficit), and available soil moisture (Fosberg
et al. 1970; Viney 1991).

The 3D configuration of wildland fuels characterizes where fuels are and where
they are not. Gaps in fuel structure influence fire spread, including whether a forest
can support transitions from surface to crown fires (i.e., individual or group torching)
and how readily fires can spread from tree crown to tree crown (crowning that is
independent of surface fire dynamics) (Parsons et al. 2017; Ziegler et al. 2017). The
spatial continuity of surface fuels also affects fire behavior. For example, although
deserts and xeric rangelands may support vegetation that is dry enough to ignite, fire
spread is unlikely due to sparse fuels and lack of continuity (Gill and Allan 2008;
Swetnam et al. 2016).

2.2.2 Traditional Methods to Estimate Wildland Fuel
Loadings

Numerous methods have been developed to estimate fuel loading (i.e., combustible
biomass) to allow for flexibility in matching available resources with sampling
objectives and constraints (Catchpole and Wheeler 1992). Keane (2015) reviewed
traditional fuel sampling methods and the inherent challenges in measuring spatial
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and temporal variability of wildland fuels. Here, we summarize the main methods
and review practical sampling limitations that are prompting evaluation of new
technologies and methods.

Many traditional approaches to wildland fuel characterization rely on a variety
of indirect methods to estimate loading and structure of wildland fuels. Methods
such as photo series or mapping fuels based on major vegetation types rely on visual
or associative techniques to relate fuel characteristics to available observations or
datasets (Keane 2015). Associating fuel characteristics with remotely sensed prod-
ucts, such as Landsat Thematic Mapper, has limitations due to imagery resolution
and forest and shrub canopies that obscure surface and ground fuels. In addition,
high variability of fuel characteristics within a site or pixel may overwhelm unique
fuelbed identification across sites (Keane et al. 2013; Prichard et al. 2019a). Another
common method is to simplify fuel descriptions into fire behavior fuel models or
broad vegetation types for fire simulations (Scott and Burgan 2005). Fuel models
generally are too simplistic to represent the complexity of wildland fuels and ignore
categories important to smoke and other fire effects such as coarse wood and organic
soils (Sikkink and Keane 2008; Keane 2015).

Direct methods involve field sampling or measuring characteristics of fuel parti-
cles in situ or in the lab to calculate loading and usually involve direct contact with
the fuel (e.g., measuring dimensions and weight of particles). Within fixed-area
plots, mass is often measured using destructive sampling, which involves physically
clipping and collecting the fuel, then drying the material and weighing it (Mueller-
Dombois and Ellenberg 1974; Sokal and Rohlf 1981). Methods for sampling litter
and ground fuel loading have remained virtually unchanged over the last four decades
(Brown et al. 1985; DeBano et al. 1998) and include destructive sampling and
estimations based on depth measurements.

Some ecosystems may have patchy soil organic matter coverage (e.g., deserts,
woodlands, sagebrush, grasslands), making sampling difficult and often requiring a
field measurement of ground fuel and litter cover. Several factors affect the accuracy
and precision of estimates for monitoring and calculations of ground fuel consump-
tion. First, the spatial variability of litter often requires a high number of measure-
ments. Depth measurements are challenging because the interface between the duff
and litter layers can be diffuse. Sampling also disrupts the ground fuel layer and
can compromise pre- and post-fire measurements. Discontinuities in some litter and
ground fuels are also challenging to quantify, including animal scat, mineral content,
tree cones, and basal accumulations (Ottmar et al. 2007). Finally, reliable bulk density
values are lacking for many fuelbeds in North America, and accurate characterization
of litter and ground fuel loading require destructive sampling to include depth and
bulk density measurements.

Due to the high spatial variability of wildland fuels and lack of correlation between
fuel strata and categories, estimations based on traditional fuel measurement tech-
niques often result in high variance and lack of precision (Keane 2013). For example,
planar intersect sampling of woody fuel loadings incorporates only one dimension
(Brown 1971). Given that fine and coarse wood can vary differently across space,
linear sampling may not capture spatial variability of fine and coarse wood (Keane
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and Gray 2013). Other conventional fuel inventory techniques, such as photo series,
may also be inappropriate because fuels vary at spatial scales that might be different
from the scales represented by the photo (Keane and Gray 2013).

Many fuel assessments involve sampling fuels before and after treatment, espe-
cially when estimating fuel consumption. Making consistent measurements is chal-
lenging because accurate fuel sampling involves direct manipulation of the fuelbed.
For example, destructive sampling removes fuel from a fixed-area plot, rendering
the plot unusable for post-fire monitoring. High variability of fuels may preclude
paired sampling (i.e., plots outside the treatment area used to quantify pre-treatment
conditions) or quantifying pre-burn conditions using classification, mapping, and
modeling. Accurate and consistent sampling methods are needed to sample fuels
for the same sampling frame throughout the monitoring period. Some have used the
photoload method (Keane and Dickinson 2007) as a way to sample fuels within a
sample frame without disturbance with mixed results (Tinkham et al. 2016).

2.2.3 Emerging Technologies and Methods

Advances in remote sensing offer a number of promising methods to characterize
wildland fuels including airborne and ground-based light detection and ranging
(Lidar) and structure-from-motion photogrammetry (SfM) (Loudermilk et al. 2009;
Hudak et al. 2016; Cooper et al. 2017) that allow for synoptic, 3D characterization
of many wildland fuels.

Ground-based Lidar, also known as a terrestrial laser scanning (TLS), is used
to estimate the loading and structure of surface and sub-canopy fuels (Loudermilk
et al. 2009; Seielstad et al. 2011). Mounted on a tripod or vehicle, TLS units obtain
scan distances at sub-cm scales from the instrument location to vegetation, surface
fuel, and other object surfaces and can penetrate through foliage layers. The Lidar
signal, which amounts to a 3D cloud of X, Y, and Z points, can then be related to
fuel loading by constructing statistical models where destructively sampled loadings
for various categories are correlated to statistical metrics derived from the Lidar
point cloud data (Fig. 2.2). It can be difficult to differentiate between fuel categories
using TLS in heterogeneous fuelbeds, and integration with multispectral imagery
is sometimes necessary for image interpretation. The cost of TLS instruments and
image processing generally relegates their use to research.

Airborne Lidar scanning (ALS) is used operationally for precision forest inven-
tory of tree stems and crowns. Its coarser resolution (912 returns per m?) as well
as the influence of overstory objects and noise limits its ability to adequately char-
acterize understory and surface fuels, especially through an overstory forest canopy
(Hudak et al. 2016a, b). Active Lidar remote sensing adds a vertical dimension to
other remotely sensed datasets, because it can penetrate vegetation biomass and
characterize pre- and post-burn vegetation structure, biomass, and fuel consumption
(Lefsky et al. 2001; Hyde et al. 2007; Sexton et al. 2009). Lidar offers advances in
forest biomass mapping, because physical measures of canopy height and density
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Fig. 2.2 Example of pre-fire TLS-derived fuel mass for (a) managed forest plots (Rowell 2017) and
b post-fire residual fuels for the same site. This dataset demonstrates variability of fuels consumption
for prescribed fire, where 3D structure, ignition pattern, fuel moisture and fluid flow of air affect
how fire consumes fuels

can be extracted from point cloud data and reduce the uncertainties in biomass (i.e.,
fuel load) estimation. Neither Lidar nor other remote sensing systems can penetrate
the forest floor to measure litter and ground fuel depth, although recent work suggests
that robust estimates of the litter-layer fuel mass are possible (Rowell et al. 2020).
StM technology uses photogrammetry of high-resolution images, often collected
from cameras mounted on an unmanned aerial system (UAS) to create 3D multi-
spectral images of vegetation and fuels (Zarco-Tejada et al. 2014). Although
photogrammetric points have inferior vegetation penetration compared to Lidar, the
multi-spectral capabilities of digital cameras make assignment of plant functional
type or live/dead status more feasible than from the single near-infrared or green
channel data in most Lidar sensors (Bright et al. 2016; Hudak et al. 2020). Inte-
grating short-range SfM using digital cameras, mobile phones, or high definition
(4K) digital video allows for fine-scale, 3D representations of wildland fuels in true
color or multispectral images (Wallace et al. 2019). Once calibrated with field-based
measurements, these datasets can provide 3D mapping of live and dead canopy
and surface fuel loading and structure with applications for biomass mapping, fire
behavior modeling, and fuel consumption measurements (Figs. 2.3 and 2.4).
Highly resolved spatial data from TLS and SfM expand sampling beyond the
domains of traditional destructive plots and planar intersect fuel surveys. As data
from TLS and SfM images can be sampled at high resolution, they can be merged
into 3D point clouds for fine-scale mapping and quantification of live and dead surface
and canopy fuels. TLS excels at capturing detailed pre- and post-fire 3D data that
represent continuous changes in estimates of bulk density at fine scales (Rowell et al.
2016; Hudak et al. 2020). Such spatially explicit fuels consumption data provide
linkages between fire behavior and smoke production by describing interactions that
produce smoke from a range of fire types and behavior (Moran et al. 2019).
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Fig. 2.3 Structure from motion point cloud generated for a mixed conifer site (roughly 500 m by
500 m in size) at the Lubrecht Experimental Forest, Montana

2.3 Fuel Consumption

Fuels are consumed in a complex set of combustion phases that differ with each
wildland fire (Ottmar 2014). Because different fuel categories (i.e., tree crowns,
shrubs, herbs, downed wood, litter, and ground fuels) have different propensities
to burn, consumption varies across time and space (Weise and Wright 2014). Fuel
type and condition, moisture content, arrangement, and ignition patterns affect the
amount of biomass consumed.

Fuel consumption is the amount of fuel that is consumed during all combus-
tion phases. During combustion, vegetative matter is decomposed through a
thermal/chemical reaction where plant organic material is rapidly oxidized producing
carbon dioxide, water, and heat (Byram 1959; Johnson and Miyanishi 2001). During
the pre-ignition phase, pyrolysis occurs first and is the heat-absorbing reaction that
removes moisture and converts fuel elements such as cellulose into char, carbon
dioxide, carbon monoxide, water vapor, combustible vapors and gases, and particu-
late matter (Kilzer and Broido 1965). Flaming combustion follows as the escaping
organic hydrocarbon vapors released from the surface of the fuels burn (Williams
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Fig. 2.4 Multi-spectral orthophoto mosaic, approximately 100 x 100 m in size, generated from
unmanned aerial system imagery collected at the Lubrecht Experimental Forest, Montana, demon-
strating potential discrimination between live fuels (shown as red tree crowns and surface vegetation)
and downed dead wood (linear blue objects)

2018) (Fig. 2.5). Combustion efficiency is usually high if volatile emissions remain
near the flames.

During the smoldering phase, emissions of combustible gases and vapors above
the fuel are insufficient to support a flame (Ohlemiller 1986; Johnson and Miyanishi
2001) (Fig. 2.5). Gases and vapors condense, appearing as visible smoke as they
escape into the atmosphere; smoke consists mostly of particles <1.0 wm diameter.
The amount of particulate emissions generated per mass of fuel consumed during
the smoldering phase, generally expressed as an emission factor (Chap. 5), is more
than double that of the flaming phase. Smoldering combustion is more common in
densely packed and highly lignified fuel types (e.g., organic soils and decayed logs)
due to the lack of oxygen necessary to support flaming combustion. For example,
deep ground fuel, such as peatland soils, can smolder for weeks, contributing greatly
to smoke emissions (Rappold et al. 2011). In boreal ecosystems, approximately
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Fig. 2.5 Representative photos of a flaming and smoldering of surface fuels (flaming dominates),
b flaming and smoldering of large log and surrounding grass and litter (smoldering dominates)
and c short- and long-term smoldering (glowing) phases of combustion in a large log (long-term
smoldering dominates) (Photos by Roger Ottmar)

90% of emissions can be attributed to burning of deep ground fuel characterizing
peatland soils. Given these impacts, methods of quantifying depth of burn and its
spatial variability are critical (van der Werf et al. 2010; Thompson and Waddington
2014).

Because heat generated from smoldering is seldom sufficient to sustain an active
convection column, smoke often concentrates in nearby drainages and valley bottoms,
compounding the effect of the fire on local air quality (Chap. 5). Smoldering combus-
tion is less prevalent in fuels with high surface-area-to-volume ratios (e.g., grasses,
shrubs, small-diameter woody fuels) (Sandberg and Dost 1990). Near the end of the
smoldering phase, pyrolysis nearly ceases, leaving unconsumed fuel as black char.
This is often referred to as the glowing or residual smoldering phase (DeBano et al.
1998).

Combustion phases occur both sequentially and simultaneously as a fire front
moves across the landscape. Combustion efficiency is rarely constant, resulting in a
different set of chemical compounds being released at different rates into the atmo-
sphere during each combustion phase (Fig. 2.6) (Ferguson and Hardy 1994). The
flaming stage has a high combustion efficiency and generally emits the least amount
of PM, 5 emissions relative to fuel mass consumed. The smoldering phase has a
lower combustion efficiency, producing more PM; 5 relative to fuel mass consumed.
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Fig. 2.6 Conceptual diagram of combustion efficiency over time and combustion phase. The red
dotted line represents a fire event with a large burned area; the orange dotted line represents a small

fire that is constrained by local inversions and has minimal combustion efficiency; the gray dotted
line represents a low-intensity prescribed fire

The surface-area-to-volume ratio of fuels also influences the amount of fuel
consumed. Smaller particles (e.g., grass and small twigs) require less heat to ignite
and combust compared to larger fuel particles (e.g., large logs). Small particles
generally burn during the flaming stage, and larger fuels often burn during the
smoldering stage. Fuel geometry also determines moisture uptake and release from
individual particles. For example, particles with high surface-area-to-volume ratios
such as grass can absorb and release moisture quickly compared to fuels with low
surface-to-volume ratios.

The compactness of fuel particles in fuelbeds can enhance or diminish fuel
consumption and affect smoke emissions. Packing ratio—the fraction of the fuelbed
volume occupied by organic material—is a measure of fuelbed compactness. A
loosely packed fuelbed (low packing ratio), such as a sparse grassland or shrubland,
has ample oxygen for combustion but may inefficiently transfer heat between burning
and adjacent unburned fuel particles. Alternatively, a dense fuelbed (high packing

ratio), such as decayed soil organic matter, can efficiently transfer heat between
the particles, but low availability of oxygen reduces consumption and combustion
efficiency.
Fuel continuity also affects fuel consumption. Sustained ignition and combustion
continue only if fuel particles are close enough that heat can be transferred between
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particles, allowing combustion to occur. For example, piles of branches and leaves
are often optimally packed with particles close enough for adequate heat transfer
with large enough spaces between particles for oxygen availability. As a result, pile
burning, when appropriately executed, often results in nearly complete combustion
(Hardy 1996).

Canopy fuels exemplify the importance of particle size and surface-to-volume
ratio in determining fuel consumption. Severe crown fires burn tree crowns and
generally leave boles and large branches behind. Even under extreme fire conditions,
live tree boles and large branches are not generally available to burn due to their
low surface area and high moisture. In fire behavior modeling, canopy bulk density
is used to quantify available canopy fuel. The diffuse distribution of canopy bulk
density makes it difficult to measure with traditional methods. However, Lidar and
other 3D point-cloud data offer promising approaches for characterizing pre- and
post-burn canopy fuel (Skowronski et al. 2011, 2020).

2.3.1 Indirect Estimates of Fuel Consumption

Consumption of wildland fuels can be measured directly by measuring pre and post-
fire loadings (Ottmar 2014), but because of time and labor constraints, it is typically
estimated from indirect, or non destructive, measurements that use remote sensing to
map consumption in 2D or 3D. To reduce uncertainties in estimated consumption for
smoke modeling, pre- and post-fire fuel measurements ideally would be co-located
rather than selecting proxy sites to represent pre-burn fuels.

Predictive models are commonly used to estimate fuel consumption based on
pre-burn fuel loadings. CONSUME (Prichard et al. 2007) and the First Order Fire
Effects Model (FOFEM; Reinhardt et al. 1997) are used operationally for prescribed
burn planning to predict fuel consumption, heat release, and emissions. They can
also estimate fuel consumption based on remotely sensed maps of area burned and
pre-burn fuel loadings. For example, the Fuel Characteristic Classification System
(FCCS) (Ottmar et al. 2007; Riccardi et al. 2007a, 2017b) supports fuelbed datasets
that are available as a map layer within LANDFIRE, based on crosswalks to existing
vegetation type (https://www.landfire.gov/evt.php). Fuelbed data from FCCS can
be used as inputs to CONSUME or FOFEM to estimate fuel consumption for a
burned area or planning unit. Model predictions can be improved with field-based
observations to refine fuelbed assignments or pre-burn fuel loading values.

Consumption can also be estimated using a satellite-derived estimate of biomass
burned (M, g) from pre- and post-burn imagery in the classic equation (Seiler and
Crutzen 1980; Kaufman et al. 1989; Wooster et al. 2005):

M=AxBxp 2.1)


https://www.landfire.gov/evt.php
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where A is burned area (m?) measured from imagery, B is biomass (fuel load) per
unit area (g m~2) estimated from pre- and post-burn imagery, and 8 is the burning
efficiency or combustion factor (fraction of fuel burned) (Vermote et al. 2009).

Burning efficiency, the amount of fuel that burns, is coupled to intrinsic fuel condi-
tions (type, physical arrangement, chemical composition, and fuel moisture) and
extrinsic abiotic factors, such as weather conditions (temperature, relative humidity,
and wind), that vary at daily and seasonal time-scales. These factors must be measured
or modeled on site close to the time of burning, then inputted into consumption
models to constrain the efficiency of simulated combustion to conditions at the time
of burning (Ottmar 2014).

Burned area (A) can be estimated from airborne or satellite imagery, although
estimations will differ depending on the scene, the type of imagery used (van der
Werf et al. 2006), and the algorithms applied (Roy et al. 2005). Multispectral satellite
imagery is commonly used for burned area mapping (Lentile et al. 2006; Hudak et al.
2007). With the many satellites in orbit today, errors in burn area estimation can be
reduced by using post-fire imagery with higher spatial resolution (250 m or better)
and shorter latency (daily or sub-daily) after fire.

Biomass (B) can also be estimated from optical imagery but with less certainty
(Tucker 1977; Sellers 1985; Gitelson and Merzlyak 1997; Thenkabail et al. 2000). In
multilayered forest canopies with high leaf area index (leaf area per unit ground area),
passive optical sensors saturate and lose sensitivity, reducing the utility of spectral
indices such as normalized difference vegetation index (NDVI) or normalized burn
ratio (NBR) (Goel and Qin 1994; Haboudane et al. 2004; Hudak et al. 2007).

Because canopy biomass is often correlated to canopy height, statistical metrics
calculated from the distribution of height measures provided by airborne Lidar can
be used to estimate biomass and other forest structure attributes such as stem density,
basal area, and volume (Lefsky et al. 1999, 2002; Hudak et al. 2008; Dubayah et al.
2010; Silva et al. 2016, 2017).

Canopy height and density information based on Lidar-based 3D point cloud
data can be converted to 2D raster maps (with height and density attributes) that
are more easily manipulated and processed with geospatial analysis. Fuel biomass
density can be estimated from airborne Lidar resampled to 30-m resolution bins,
commensurate with LANDFIRE fuel maps (Hudak et al. 2016b), or as fine as 5-m
resolution (Hudak et al. 2016a). Ground-based TLS can be used at scales down to
10 cm. At this fine grain size, it is feasible to differentiate fuel components that are a
heterogeneous mixture of materials (or species), each with their own emission factor
(EF) (Chap. 5). For finer scales, Eq. 2.1, which predicts the amount of consumed
biomass (M, g) at the level of individual fuel components (or species) x (Seiler and
Crutzen 1980; Bronnimann et al. 2009), can be revised to

M,=AXxB x 8 x EF, 2.2)

In the fine-scale 3D domain, fuel volume (V, m~>) can be substituted for area A
(m~2), and fuel bulk density (BD, g m~?) can be substituted for biomass (B) density
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(g m2), traditionally characterized in 2D, to estimate M (g), the mass of emissions
due to consumption of fuel component (or species) x.

Terrestrial Lidar has also been used to estimate shrub consumption. Hudak et al.
(2020) demonstrated that 3D estimates of shrub volume, combined with co-located
field measures of bulk density, can provide spatially explicit estimates of vegetation
bulk density. Comparison of pre- and post-fire 3D fuel maps can provide 3D maps of
consumption, although at slightly coarser resolution, given errors in co-registration
between pre- and post-fire maps.

2.3.2 Direct Measures of Fuel Consumption

Direct measurements of heat flux using thermal imagery can be calibrated to esti-
mate consumption rates and to map consumption which are important for smoke
prediction. The rate of biomass loss (i.e., consumption) is linearly related to the rate
of heat flux from an active fire (Wooster et al. 2005; Freeborn et al. 2008; Smith
et al. 2013). Heat flux can be measured remotely from the thermal infrared radiation
emitted by the fire, which amounts to 10-20% of the total heat flux (Byram 1959).
Temperatures of heat sources, as measured by calibrated thermal infrared sensors,
can be converted to fire radiative power (FRP, W), which equates to Joules per second
(J s71). Continuous measurements of FRP over the duration of the fire can be inte-
grated with respect to time(s) to estimate total heat flux, also known as fire radiative
energy (FRE) in J (Fig. 2.7). The integral of the FRP time series can be approximated
(Boschetti and Roy 2009) as

FRE = Y " 0.5(FRP; + FRP;_;)(t; — 1;_1) 2.3)

where time ¢ is the time in seconds (s) for each FRP observation i in the time series
(Wooster et al. 2013). This integration can be applied to every pixel in a multi-
temporal stack of FRP observations to produce an FRE image that estimates total
consumption (Hudak et al. 2016a; Klauberg et al. 2018).

Comparisons between the (direct) FRE approach to estimating fuel consumption
and the (indirect) approach to consumption estimates derived from remotely sensed
burn area (A) and pre-fire fuel biomass (B) measurements by Egs. 2.1 and 2.2 are
reasonably linear (Roberts et al. 2009; Wooster et al. 2013). The relationship scales
because it is linear, permitting a simplification of Eq. 2.2:

M, = FRE x C x EF, 2.4)
where C is a “combustion factor” (g kJ~!) for a given vegetation fuel type (x).

Accuracy of FRE-derived estimates of consumption depends on the frequency of
FRP observations and whether they span the full duration of the fire, including the
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Fig. 2.7 Using digital thermography from an unmanned aerial system platform, high fidelity FRE
and rate of spread can be extracted from these data. Moran et al. (2019) demonstrate the utility of
these platforms, describing the points of head, flanking and backing fire (Image used with permission
from the author)

flaming and smoldering phases of combustion. Thermal sensors mounted on fixed-
wing aircraft can image a given site for only a few seconds, separated by several
minutes needed to turn the aircraft around and re-image the same location on the fire
(Hudak et al. 2016a; Klauberg et al. 2018). Visible and near-infrared (NIR) sensors
can capture flame location and geometry and distinguish flaming combustion from
residual smoldering combustion. The dual-band technique, using both mid-wave
infrared (MWIR) and longwave infrared (LWIR) wavelengths, provides for more
robust FRP estimation than using MWIR or LWIR alone (Dozier 1981).

Current measurement technologies are unable to partition the FRP signal between
different fuel components burning simultaneously within the same pixel space. For
surface fires beneath forest canopies, the FRP signal may be attenuated from over-
story canopy occlusion, which may differ with canopy cover (Mathews et al. 2016).
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Correcting for canopy occlusion may be possible through Lidar-derived canopy
structure (Hudak et al. 2016a).

2.4 Gaps in Wildland Fuels Characterization

Until recently, a major gap in our understanding of wildland fuels has been a lack of
spatial dimensionality in fuel characterization, which is necessary to reduce uncer-
tainty and increase precision of inputs to fire behavior, fuel consumption and smoke
models (Chaps. 3 and 4). Advances in remote sensing techniques offer promising
approaches to 3D fuel characterization for fine-scale inputs of CFD models of fire
behavior to landscape fire spread, fuel consumption, and smoke models. These
methods are currently under development (Rowell et al. 2020), employing a hier-
archical sampling method from fine-scale characterization to coarse-scale mapping
applications (Fig. 2.8).

Broad-scale mapping and modeling applications present an additional challenge
to quantifying fuel characteristics and represent them hierarchically across spatial
scales. Field and remote sensing measurements may be taken at similar scales, but
they are inherently difficult to integrate due to the complexity of fuels and challenges
in co-locating and coordinating field and remote sensing measurements. For example,
a new approach to 3D field sampling (Hawley et al. 2018) was designed specifically
to link 3D fuel types and fuel mass, collected within 1000-cm? cubes to the same
resolution of volume TLS point clouds of vegetation structure, with 1 cm? precision

3D Fuels Sampling
Voxel based

Particle / object Patch Landscape
Grain size: Grain size: Grain slzae:
10 to 1000 cm* 1000 cm® to 1 m* 1to5m

Object Based
QSM or Simulation

TLS Based
Point cloud to voxel
occupied volume

Comparison to object-
based and 3D fuels
sampling

UAS Based

Image-based: multi-
spectral data for
fuel mapping

SfM 3D point cloud
generated hulls

ALS Based

Relate fine grain fuels to
ALS metrics

Relate and classify fuels
to multispectral data

Fig. 2.8 Conceptual diagram of multi-scaled estimates of 3D fuels characterized using a hierar-
chical sampling method from individual fuel particles or objects to patch and landscape extents and
corresponding sampling resolutions (grain size)
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Fig. 2.9 Voxel sampling frame, vertical view showing the 10 x 10 x 10 cm sample voxel grid of
a mixed shrub, herb, grass, ad litter fuelbed (Photo by Susan Prichard)

(Fig. 2.9). In 3D imagery, volumetric pixels are termed voxels, and the 1000-cm?
cubes are also referred to as voxels within the field sampling frame.

Calibrated with voxel field datasets, TLS is a novel and scalable advancement in
fuel characterization with highly resolved bulk density estimates for known volumes
(Rowell et al. 2020). Robust coupling involves co-locating techniques between indi-
vidual 3D field plots and TLS point clouds. However, this approach has limitations.
First, voxel sampling provides explicit representation of fuel types and fuel mass,
but the 1000 cm? space of each voxel is assumed fully occupied due to lack of
measurements at finer spatial scales. Second, the TLS is limited by occlusion near to
the ground where most fine and consumable fuels occur. Additional work is needed
to create machine-learning algorithms to classify 3D point cloud datasets generated
from TLS and/or photogrammetry into objects and apply rule-based assignments of
metrics such as bulk density, surface-area-to-volume ratios, and fuel moisture content
to each classified object or volume.



32 S. J. Prichard et al.

2.4.1 Scaling from Fine-Scale to Coarse-Scale Fuel
Characterization

The structure and condition of fuels influence their availability to burn and how much
exogenous work must be applied to release their energy. For example, coarse-scale
gridcells (e.g., 5 x 5 x 5 m) may be sufficient to represent crown fuels during extreme
fire spread events, where fire weather and topography dominate fire behavior and
smoke production patterns. In contrast, fine-scale fuel heterogeneity measurements
are often critical for accurate fire behavior predictions in a low-intensity surface fire
such as a prescribed burn. A forest that has been recently thinned and burned contains
combustible fuels but in a structure that is less available to burn in a subsequent fire.
However, column-driven fire spread combined with strong winds could exceed the
burning threshold for that site. Similarly, sites with high live fuel moisture in grass and
shrub fuels may present barriers to fire spread under normal fire weather conditions,
but burning thresholds can be exceeded by exceptional fire weather.

At present, no established method exists to scale 3D fuels data from fine-scale
field measurements to the larger spatial scales (e.g., burn units or watersheds) useful
for decision making. Before such mapping applications can be developed, modelers
need to identify how fuel metrics (e.g., loading, bulk density, heat content) and
characteristics (e.g., fuel type and live/dead) can be assigned from sampled values
to large spatial scales and across fire types (e.g., prescribed fire, wildfire, surface fire
versus canopy fire).

Fire atmosphere interactions that contribute to fire behavior, plume dynamics,
and smoke production are beginning to be resolved in models such as WRF-SFIRE
(Mandel et al. 2011), FIRETEC (Linn et al. 2002), and Wildland-Urban-Interface
Fire Dynamics Simulator (WFDS; Mell et al. 2007). However, evaluation datasets
are needed to determine how the scale and precision of fuel inputs influence model
predictions of fire behavior, heat release, and smoke production.

Large-scale studies such as the Fire and Smoke Model Evaluation Experiment
(FASMEE; Prichard et al. 2019b) and the FIREX-AQ Western wildfires campaign
(Werneke et al. 2018) include synchronized and coordinated measurements of source
characterization, fire behavior, plume dynamics, and smoke production. Investments
in these coordinated measurement campaigns are necessary to improve our under-
standing of fire atmosphere interactions and inform future model evaluation and
development (Liu et al. 2019, Chap. 4).

2.4.2 Challenges in Forest Floor Characterization

Organic soil layers, including litter and ground fuels, can be a substantial portion
of total fuel loading and contribute disproportionately to smoke emissions including
long-term smoldering events. However, methods for characterizing peatland and
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forest floor layers have not advanced much in recent decades. Remote sensing tech-
niques, such as TLS, can be used for litter characterization but are unable to pene-
trate organic soils and cannot resolve their density or depth. Models of organic soil
accumulation, decomposition, and changing moisture characteristics are needed to
complement 3D fuel measurement techniques.

No models exist that provide accurate representations of ground fuel consumption
as it relates to forest structure, climate, weather, leaf chemistry, and time since last
fire, all of which are dynamic through space and time. For example, depending
on fire intensity and soil moisture, wildland fires rarely consume entire organic
soil layers. Variability in ground fuel consumption and smoldering patterns adds
further complexity to smoke production. Recent research on spatial distributions of
ground fuel depth, biomass, and other characteristics in long-unburned forests of the
southeastern USA emphasizes fine-scale spatial and temporal variability in ground
fuels and the potential challenges of sampling across forest stands or burn units
(Kreye et al. 2014). In boreal ecosystems, where the majority of biomass is stored
in peatland soils, Chasmer et al. (2017) showed that variations in forest floor depth
could be quantified by comparing ground surface elevation models derived from
separate pre- and post-fire Lidar collections. However, in most fuelbeds, ground fuel
layers are too shallow relative to the vertical precision of airborne Lidar to detect
changes in depth as a result of consumption.

2.4.3 Modeling Spatial and Temporal Dynamics of Wildland
Fuels

The biggest gap in our knowledge of wildland fuels is creating up-to-date and accu-
rate models of fuel dynamics to inform smoke modeling. This challenge has been
termed the “ecology of fuels” (Mitchell et al. 2009), requiring an understanding of
the entire life cycle of wildland fuels, including vegetative reproduction, growth,
senescence, deposition of fine and coarse debris, decay, mortality and connections
to weather, climate, soils, and nutrient cycling (Agee and Huff 1987; Harmon et al.
2000). The 3D spatial complexity of fuels and their dynamics over time, translate
to similar complexity and variability in the availability of fuels to burn and their
contribution to fire behavior and effects. However, the life cycle of fuels as it relates
to vegetation dynamics and feedbacks with fire has not been fully defined. Further-
more, the temporal dynamics of fuels can be distinct between fine-scale changes in
fine-fuel moisture and coarse-scale changes (e.g., vegetation structure, productivity
and climate).

Limited understanding of live and dead fuel moisture dynamics also constrains our
ability to model fire behavior, fuel consumption, and smoke production. Fuel mois-
ture varies across ecosystems, seasons, and fuel components, and moisture dynamics
often exhibit large sub-daily changes on local scales (Viney 1991; Banwell etal. 2013;
Kreye et al. 2018). Fuel moisture often dictates the availability of fuels for ignition
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and consumption, with pronounced differences across arid, semi-arid, and humid
climates. Summer climate in western North America is generally characterized by
a long period of drying, making coarse wood and organic soils generally available
to burn during the peak of wildfire season (Estes et al. 2012). In contrast, the south-
eastern USA has a humid, subtropical climate; downed wood decays quickly, and
where coarse wood exists it can act as a fuel break during low-intensity fire spread.
Live and dead fine-fuel dynamics determine if fuels are available to burn, either
promoting or inhibiting fire spread. For example, across ecosystems with grass-
dominated fuelbeds, spring green-up is generally considered a barrier to fire spread.
Differences in fuel moisture and the corresponding availability of fuels to burn over
hours to months are well known among practitioners, but these fundamentals are
not explicitly represented in predictive fire behavior, fuel consumption, and smoke
models.

2.5 Vision for Improving Fuel Science in Support of Smoke
Science

Fuel characterization and mapping to support smoke science will need to rely on
a range of methods. Because some fuels, including forest floor and peatland soils,
cannot be remotely sensed, future approaches to fuel characterization will involve a
combination of traditional methods and new technologies. Rather than describing fuel
characteristics as modeled estimates across raster maps, the ranges and variations of
fuel distributions will be required, particularly for CFD models that rely on gridded,
3D inputs of fuels, terrain, and atmospheric turbulence. Fuel inventory and modeling
methods also need to be developed to capture the nested spatial variability of wildland
fuels and dynamics of wildland fuelbeds over time (Keane 2015).

As more work is devoted to 3D fuel characterization for CFD models, we envision
alibrary of 3D fuels, mapping tools, and parameters for customization of fuelbeds for
specific applications and fine- to coarse-scale mapping of pre- and post-burn canopy
and surface fuels (Fig. 2.10). To date, CFD models such as FIRETEC and WFDS are
used only for research due to their complex input and computational requirements.
However, progress is being made to advance real-time models of fire spread and
smoke production that can be used operationally for prescribed burn planning and
wildfire monitoring (e.g., QUIC-Fire; Linn et al. 2020).

For CFD models to move into operational use, applications will be needed to trans-
late 3D fuel characteristics into model inputs at appropriate scales for smoke manage-
ment applications (e.g., prescribed burn planning, wildfire smoke modeling). CFD
modeling requirements mean that next-generation fuel mapping will need synthetic,
gridded fuelbeds from remotely sensed data, machine-learning algorithms to iden-
tify objects within 3D point clouds, and assigned fuel properties for each identified
object or fuel complex (based on statistical models and known probability distri-
butions) (Fig. 2.11). User-friendly technology and analytical tools will be required
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Fig. 2.10 Remotely sensed datasets can be used to characterize and quantify patterns of bulk
density, consumption and fire effects. For example, Plots a and b represent pre-fire and post-fire
short-range, photogrammetry-based 3D point clouds for an individual plot that can be calibrated
with field data to estimate fuel consumption. Estimated consumption can then be scaled to prescribed
burn units using synoptic pre- and post-burn TLS imagery (¢) where bright yellow on the ground
is burned and blue hues are unburned

to guide smoke managers in novel but practical approaches to improve 3D fuel
characterization and mapping.

Better characterization of sources of smoldering consumption can also improve
estimates of the severity and duration of smoke impacts to communities, especially
from prescribed burning (Hyde et al. 2011). Advances with SfM from both UAS
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Fig. 2.11 Synthetic 3D broadleaf and long-needled pine litter fuelbeds developed from object-
based scanning and statistical models of leaf litter composition and depth [From Rowell et al.
(2016)]

platforms and short-range photogrammetry offer access to fine grain data that can be
used to map fuels that contribute most to smoldering combustion and long-duration
smoke production (Wallace et al. 2012; Cooper et al. 2017). SfM photogrammetry can
complement ALS imagery by providing true color or multispectral images that allow
for delineation of live and dead fuels and fuel classification refinement (Fig. 2.10).
For example, integration of SfM imagery can assist in object-based classification
of large coarse woody debris, and these objects can then be attributed with mass
estimates to improve modeling of flaming and smoldering emissions (Fig. 2.4).

TLS-based estimates can be used to refine coarser-scale estimates of surface and
canopy fuels (Garcia et al. 2011; Seielstad et al. 2011; Rowell et al. 2016, 2017).
Fuel libraries from TLS tied empirically or probabilistically to large-scale ALS or
passive remote sensing datasets will be a significant step toward broad-scale 3D
mapping applications. A limitation of ALS and TLS has been cost, efficiency, and
time since acquisition. There are a growing number of ALS datasets nationally, but
these snapshots in time do not encompass disturbances that could alter fuel loading
and distribution or expected fire behavior. Forest growth models, such as the Forest
Vegetation Simulator, can use ALS data and their derivatives to calculate estimates
of growth and biomass accumulation in forest canopies.

Maintaining reliable, up-to-date maps of wildland fuels will require linkages
between remotely sensed datasets and ecological process models. High deposition
of vegetation, coupled with severe disturbance effects, may alter fuelbed charac-
teristics and render fuel maps outdated (Keane et al. 2001). It may be especially
important to capture fuel dynamics in frequently burned or actively managed ecosys-
tems. Ecosystem models typically fall short in simulating realistic fuel characteristics
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needed by existing fire models (Thornton et al. 2002). Ecological models that simu-
late development, deposition, decomposition, and disturbance (Sect. 2.2) can capture
multi-scale fuel dynamics and translate them to fire behavior and smoke modeling at
relevant spatial scales (Hatten and Zabowski 2009; Dunn and Bailey 2015). Linking
fuel characteristics with ecological processes can inform fire behavior and smoke
dynamics. Improved representation of fuel dynamics within ecological models will
also refine how they simulate wildfires, insects, disease, fuel treatment and ecological
restoration activities, and climate change.

2.6 Science Delivery to Managers

Over the past two decades, several fire effects and smoke models have been used by
managers to characterize fuels and inform fire and smoke management decisions.
Table 2.2 presents examples of models used to predict smoke production and, in
some cases, dispersion. To appropriately apply their products to smoke manage-
ment decisions or ensemble predictions, it is important to understand the error, bias,
assumptions and limitations of the models. The BlueSky Smoke Modeling Frame-
work (Larkin et al. 2010) is an operational smoke prediction tool that uses ensemble
modeling to estimate available fuel, consumption, emissions, and smoke dispersion.
BlueSky estimates fuel loadings from a 1-km fuelbed map of the USA or user inputs
and models fuel consumption with CONSUME as a first step to smoke production
and dispersion modeling (Larkin et al. 2010).

The Interagency Fuel Treatment Decision Support System (IFTDSS, https://ift
dss.firenet.gov) was designed to provide a Web-based system to assist managers in
fire, fuel, and smoke planning; reduce the number of tools for which access is needed;
and reduce error propagation caused by using multiple, ensemble models. IFTDSS
is working to incorporate CONSUME and FOFEM modules that use mapped fuel
loadings values from LANDFIRE (Rollins 2009) or user inputs. CONSUME and
FOFEM rely on a combination of empirical, semi-empirical, and physical process-
based models of consumption. Command-line versions of calculators for both models
are available for smoke modeling applications.

Every approach to modeling smoke emissions has limitations. Point-based models
such as CONSUME and FOFEM use many empirical equations for estimating fuel
consumption and smoke emissions. However, most equations were developed with
data collected from a limited number of ecosystems and fuelbeds, and under a limited
range of fire and fuel conditions. The physics-based process model in FOFEM simpli-
fies many complex processes and was calibrated using relatively few lab and field
burns (Albini et al. 1995; Albini and Reinhardt 1995). Although point models provide
smoke estimates based on published research and expert opinion, model precision
is limited by the high variability inherent in the production of smoke (Larkin et al.
2012). For example, Prichard et al. (2014) used CONSUME and FOFEM to compare
predicted and actual fuel consumption in the southeastern USA, finding that predicted
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Table 2.2 Selected smoke models, ranging from relatively simple to complex, including general

benefits and drawbacks

Model scale | Example Simulation area | Benefits Drawbacks
Point CONSUME* Project Relatively easy | Limitations of simple
to install and empirical equations.
use. Fast Unstudied fire, fuel, and
execution time | consumption
relationships
Point FOFEM" Project Relatively easy | Generalizations in
to install and woody consumption
use. Fast model. Limitations of
execution time | empirical equations.
Unstudied fire, fuel, and
consumption
relationships. Poor
correlation of default and
actual fuel loadings
Landscape | Emissions State Provides Drawbacks of the
Estimation statewide smoke | FOFEM module.
System (EES)¢ estimates Untested fuel moisture
assumptions. Uses daily
fire perimeters; no
predictive capability
Landscape | BlueSky! Regional, state, | Provides Drawbacks of the
national variable-scale CONSUME module.
smoke forecasts | Poor correlation of fuel
maps and actual fuels
Landscape | Weather Regional, state, | Provides Errors associated with
Research and national variable-scale fire spread model and
Forecasting smoke forecasts. | unburned areas inside the
(WRF)-Sfire Real-time estimated fire perimeter.
WRF-Chem® atmospheric Limited number of
boundary layer | fuelbeds. Fuelbeds
and weather developed for fire
forecast behavior estimation, not
component. smoke. Computationally
Coupled intensive
weather-fire
modeling
Landscape | High-Resolution | Regional, state, | Provides Fire detection is at a
Rapid national variable-scale relatively coarse spatial
Refresh—Smoke smoke forecasts. | resolution (~3 km) and
(HRRR-Smoke)f Based on WRF | variable temporal
and WRF-Chem. | resolution. Interpolation
Radiative power | of fire spread rate
is remotely between satellite passes.
sensed; no fuel | In development
inputs required

(continued)
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Table 2.2 (continued)

Model scale | Example Simulation area | Benefits Drawbacks
Landscape | HIGRAD Up to large Coupled 3D, Very computationally
FIRETECS projects physics-based intensive. Not real time.
models of Currently for research
combustion and | only
atmospheric
processes

4 Prichard et al. (2007)

b Reinhardt and Crookston (2003)

¢ Clinton et al. (2003)

d Larkin et al. (2010)

¢ Mandel et al. (2011), Grell et al. (2005)
T Ahmadov et al. (2019)

2 Linn et al. (2002)

fuel consumption had high uncertainty in some cases, particularly with high pre-burn
fuel loading.

For smoke model applications to be useful for managers, models must be updated
to include recent research. A formal process is needed to provide periodic version
updates to ensure that smoke modeling applications include the “best available
science” for estimating smoke emissions. This is of particular concern as existing
point models are integrated or merged into spatial modeling frameworks.

There are relatively few training options for the wide variety of available smoke
models and products. The Introduction to Fire Effects (RX-310) and Smoke Manage-
ment Techniques (RX-410) classes developed by the National Wildfire Coordinating
Group provide limited training using CONSUME and FOFEM and an introduction
to BlueSky. The annual Air Resource Advisor training class (administered by the US
Forest Service) focuses on large-scale (wildfire) smoke impacts and primarily uses
BlueSky for simulations. Students in this class are members of fire Incident Manage-
ment Teams and use air quality modeling to assess smoke risks to fire personnel and
local communities. The limited options for smoke model training can lead to misinter-
pretation of model results or overreliance on model estimates without understanding
underlying limitations and assumptions.

2.7 Research Needs

For fuel and consumption research related to smoke management, scientific chal-
lenges can be summarized in six categories as follows:

e Consistent methodologies to address sampling of wildland fuels—Although field
sampling is needed to represent a fuelbed from ground to canopy, the required
sampling methods do not easily overlap (e.g., planar intersect for downed wood,
depths and bulk density for litter, ground fuels), and most traditional fuel sampling
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methods have low repeatability and high uncertainty. Because fuel categories are
not necessarily well correlated, predicting one component based on available
sampling of another is unrealistic. Hierarchical sampling methods that employ a
range of remotely sensed and field-based datasets (Fig. 2.5) are needed to integrate
fuels data and support characterization at the scale of prescribed burn units and
wildland fire events.

Better understanding of the role of sampling scale in error propagation in fuel
characterization and mapping—The appropriate sampling area and intensity may
differ by fuel component (e.g., bulk density and biomass of litter and ground fuels).
Scale considerations are important for coordinated sampling design and to inform
applications that apply fine-scale fuel characterization to coarser-scale mapping
applications. CFD models can be integrated with smoke simulations to evaluate
sensitivity of smoke prediction to fuelbed heterogeneity and spatial scales of fuel
inputs. More work is needed to evaluate the sensitivity of current CFD models
(e.g., FIRETEC, WFDS) to spatial scales of fuel characterization across different
vegetation types.

Improved methods for characterizing fuels that are major sources of smoke,
including coarse wood, peatland soils, and other ground fuels—Although TLS
and SfM offer promising advances in characterizing wildland fuels, these tech-
niques cannot quantify deep organic soil layers. Intensive field sampling is needed
to characterize variability in peatland soils and other ground fuels and to contribute
to predictive models of ground fuels, potentially paired with innovations in remote
sensing techniques or soil mapping. In contrast, TLS and photogrammetry may
aid in more accurate surveys and characterization of coarse wood. However, more
work is needed to understand and characterize fuel moisture, decay class, and
contribution of coarse wood to fuel consumption and emissions.

Improvements to 3D fuel characterization using ALS, TLS, and SfM photogram-
metry—Remote sensing techniques, including integrated ALS, TLS, and SfM
datasets, have advanced fuel characterization, but research is needed to inform
image interpretation and quantification of wildland fuel loadings and structure.
Some of the remaining challenges with these methods include:

— Resolutions of available remotely sensed imagery may not match (e.g., Landsat
TM vs. Lidar vs. photogrammetry) and may not fit the spatial scale or match
the temporal dynamics of the component of interest (i.e., downed wood vs.
stand structure).

— Wildland fuels are inherently variable in 3D space, and correlations are often
weak between canopy fuels and surface or ground fuels, which are obscured
by forest canopies.

— Fuel moisture dynamics are critical for fire behavior and smoke production but
are difficult to measure with remote sensing.

Use of 3D fuels mapping for improved estimates of fuel consumption—As methods
to map fuels in 3D become more widely available, improved maps of fuel
consumption based on pre- and post-burn imagery will be possible. Field vali-
dation will be required to inform fuel consumption mapping that can improve
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emission estimates for flaming front fires and post-flaming front smoldering
combustion.

e [mproved models of fuel dynamics—More research is needed on modeling vege-
tation and fuel dynamics over time and space, with emphasis on climate change
effects on vegetation and consequences for fuel properties. Live fuel moisture
is particularly dynamic and a critical aspect of fire behavior and effects (e.g.,
Jolly et al. 2014). Spatiotemporal dynamics of fuels has implications for fire,
climate, and carbon modeling at local to regional scales. Research is needed to
refine existing ecological process models and potentially develop new ones to
project vegetation and fuel dynamics, tailoring projections to next-generation fire
behavior and smoke models.

2.8 Conclusions

Fuels are foundational to smoke prediction, often being the largest source of potential
uncertainty and error in the chain of biophysical components involved in combus-
tion and smoke production from ground to atmosphere. Until recently, fuels and
fuel consumption have been studied using traditional methods to estimate the cover,
height, and biomass of wildland fuels across dominant ecosystems of North America,
providing a good knowledge base in both the scientific and management communi-
ties. Over the past decade, significant progress has been made in describing and quan-
tifying fuels more accurately; new technologies have improved 3D characterization
and quantification across large spatial scales.

Despite this progress, improved smoke modeling will require coordinated
advances in fuel characterization, consumption by combustion phase and fire atmo-
sphere interactions associated with fire behavior, and plume dynamics modeling.
One of the biggest challenges in characterizing fuels is the high spatial and temporal
variability that is present in wildland fuels in nearly all types of ecosystems. Quan-
tifying fuel loadings across large landscapes continues to be a major issue, for both
technical and practical reasons. In addition, up-to-date fuel inventories are relatively
rare, with measurement scale and mapping applications often being a barrier for
agencies that manage vegetation and fuels.

Although most fire and fuel managers are generally well informed about tradi-
tional methods for characterizing fuels, greater emphasis is often placed on fire
behavior than smoke production. Potential smoke impacts on human health and
other activities (Chap. 7) provide an important context for smoke science and for
applications of scientific tools and concepts in managing both prescribed fire and
wildfire (Engel 2013; Ryan et al. 2013; Long et al. 2018). Improved linkages, both
technically and logistically, are needed to inform estimates of smoke production that
may exceed National Ambient Air Quality Standards, as well as phenomena such
as long-term smoldering events and nighttime inversions. Although some targeted
work has been conducted on coarse wood and ground fuel consumption (Brown
et al. 1985; Varner et al. 2007; Prichard et al. 2017), the sample size and range of fire
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weather and fuel moisture conditions are currently inadequate to improve existing
fuel consumption models.

Most fuels managers do not have routine access to high-tech tools or high-
resolution data to estimate smoke production (e.g., 3D characterization of fuels).
Therefore, practical approaches are needed to improve field-based fuel characteriza-
tion, fire behavior modeling, and consumption modeling, which will in turn elucidate
the potential contribution of specific fuels (coarse wood, rotten stumps, basal accu-
mulations, and deep organic soil layers) to fire emissions and smoke. Given the
spatial and temporal complexity of wildland fuel dynamics, a better understanding is
needed on the ecology of vegetation and fuels—concurrently, not as separate topics.
In future decades, we anticipate that climate change will drive substantial changes
in vegetation and fire dynamics, with concomitant changes in fuelbeds and their
contribution to fuel consumption and emissions. Developing or revising ecological
process models to ensure compatibility with next-generation fire behavior and smoke
models will improve characterization of wildland fuel dynamics as well as smoke
predictions.
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Conditions for Smoke Modeling
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Abstract Modeling smoke dispersion from wildland fires is a complex problem.
Heat and emissions are released from a fire front as well as from post-frontal combus-
tion, and both are continuously evolving in space and time, providing an emission
source that is unlike the industrial sources for which most dispersion models were
originally designed. Convective motions driven by the fire’s heat release strongly
couple the fire to the atmosphere, influencing the development and dynamics of the
smoke plume. This chapter examines how fire events are described in the smoke
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modeling process and explores new research tools that may offer potential improve-
ments to these descriptions and can reduce uncertainty in smoke model inputs.
Remote sensing will help transition these research tools to operations by providing
a safe and reliable means of measuring the fire environment at the space and time
scales relevant to fire behavior.

Keywords Atmosphere models + Coupled fire + Energy release * Fire behavior -
Fire progression + Remote sensing

3.1 Introduction

Many tools used to simulate smoke impacts from wildland fires evolved from tools
used in the air quality community for assessing anthropogenic pollution impacts. As
such, it has been necessary to describe a wildland fire event in terms common to
these anthropogenic pollutant sources—often characterized as point, line, and area
sources. Descriptions of a fire event, or of an individual burn period of interest, are
often reduced to simply an amount of fuel consumed at a specified location during
a period of time, perhaps with diurnal variability. As the sources of the emissions
and energy that drive plume dynamics (Chaps. 4 and 5), fire behavior and associated
heat release (this chapter) are critical links between fuels (Chap. 2) and downwind
impacts (Chaps. 6 and 7).

Fire—atmosphere interactions are tied to the energy released by the combustion
process that heats the surrounding air. This heating drives a convective circulation
whereby the heated air expands, decreases in density, and is forced upwards by
denser ambient air. The drawing in of ambient air to replace the buoyant updraft
is referred to as entrainment and is determined by the conservation laws of mass
and momentum. The spatial pattern of entrainment is governed by fireline shape,
ambient winds, topography, and drag induced by vegetation structure. A sustained
release of heat, such as from a wildland fire, induces a feedback that allows the scale
of these convective circulations to grow and interact throughout the deepening layer
of the atmosphere and form a plume. This chapter focuses on how to better capture
the spatial evolution of this heat source in the description of fire events used in the
smoke modeling process, and how these descriptions can be improved to reduce the
error associated with forcing the fire emissions modeling process to conform to an
overly idealized anthropogenic emissions source.

The description of a fire consists of both temporal and spatial components. Accu-
rately describing the evolution of a fire through time connects the release of emis-
sions to varying atmospheric conditions such as wind direction and atmospheric
stability that can greatly affect transport and dispersion. The spatial component of
a fire description is more complex: The atmosphere varies temporally and spatially,
requiring that the fire location and the time component are correct. But a fire is much
more than a passive emitter of pollutants to the atmosphere. Distribution of heat
across the landscape creates feedbacks between the fire and atmosphere, altering
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flow patterns and affecting downwind plume characteristics (Chap. 4). For a simple
idealized source, Cunningham et al. (2005) illustrate how a buoyant plume interacts
with a surface shear layer to yield variations in plume spread and depth (Fig. 3.1). For
a larger fire, such processes interact across different scales to produce more complex
plumes (Fig. 3.2), and that multiscale interaction can influence fire spread as well.

Fig. 3.1 Volume-rendered potential temperature at # = 1100 s for the realistic heat source large-
eddy simulation. The upper two images are for the deep shear layer (zo = 150 m) case with views
from a the inflow boundary and b lateral boundary. The lower two images are for the shallow shear
layer (zo = 50 m) case with views in (c) and (d) identical to those in (a) and (b) respectively.
Darker shades represent higher values of potential temperature. From Cunningham et al. (2005)
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Fig. 3.2 Panorama image of the smoke plume above a prescribed burn at Magazine Mountain,
Arizona, on February 27, 2004, revealing a complex structure of merging multiple updraft “cores”
when the plume is viewed from the ground. From Achtemeier et al. (2011)

3.2 Current State of Science

3.2.1 Representing Fire in Smoke Models

Smoke models are numerical tools that provide information on the spatial distribution
of pollutant species through time, such that the ecological, human health, economic,
and societal effects of wildland fires can be simulated and assessed. Box models,
Gaussian plume models, and Lagrangian particle and puff models, among others,
are based on atmospheric transport and dispersion theory and may include complex
chemical mechanisms for describing the generation of ozone and secondary organic
carbon (Goodrick et al. 2012). Each tool must include a description of their emissions
source, based on a representation of a wildland fire that includes fire behavior and
heat release. For this assessment, we examine two smoke modeling tools commonly
used on an operational basis in the USA and explore some additional models used
within the research community.

3.2.1.1 Operational Tools

Operational tools are those models used for real-time decision making and plan-
ning for wildland fire management. With the exception of some planning applica-
tions, operational tools must make calculations faster than real time and be able to
tailor outputs in order to effectively support decision making; for operational smoke
models, the output is focused on surface pollutant concentrations rather than the full
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three-dimensional (3D) distribution. In contrast, research tools are focused more on
advancing our understanding of a phenomenon and thus operate without the faster
than real-time constraint and provide a broader range of outputs that are useful to
scientists but of little practical value to land managers.

VSMOKE

VSMOKE (Lavdas 1996) is a Gaussian plume model designed for estimating smoke
impacts from prescribed fires in the southeastern USA. It is best suited for simu-
lating the effects of a single fire within periods of constant or slowly changing
fire behavior, emissions, and weather conditions, during which the smoke can be
adequately depicted within a steady-state framework. The fire is treated as either a
point source or a specific fire area that releases emissions and heat at a constant rate.
The atmosphere is described by a mixing height, transport wind, and a stability class
which is treated as steady state and spatially homogeneous. The stability class and
heat release affect dispersion calculations through the determination of the plume
rise as determined by the commonly used Briggs equations (Briggs 1982).

Because VSMOKE is designed for prescribed fires, the model accommodates a
wide range of fire behaviors, such as fires dominated by combinations of backing
and flanking fire rather than conditions dominated by head fire. This is accomplished
through a parameter controlling the fraction of smoke released from the surface versus
that released at the plume-rise height, or uniformly distributed between the surface
and the plume-rise height to achieve a range of possible plume behaviors (Lavdas
1996) (Fig. 3.3). The user can assign the parameter, although a default value based on
unpublished observations of prescribed fires is provided by Lavdas. Unfortunately,
there is little work connecting variations of this fraction of emissions subject to
plume rise to proportions of head, flank, and backing fire or other descriptions of
firing method used.

BlueSky

BlueSky is a modular smoke modeling framework which links a series of processing
steps containing datasets or individual component models to estimate smoke emis-
sions and transport for smoke forecasts and decision support (Larkin et al. 2009).
Figure 3.4 shows the array of models that can be incorporated into the BlueSky frame-
work. The minimum fire information input data required by BlueSky are fire location
and daily fire growth. This fire information is transformed into dispersion model
inputs by identifying appropriate fuel loads for the location, applying a consumption
model to estimate daily fuel consumption, and then constructing a time profile of
heat and emissions release.

By default, wildfires use the Western Regional Air Partnership wildfire profile
(Air Resources Inc. 2005) that allocates 68% of the emissions to an afternoon active
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Fig. 3.3 Effects of plume rise options on ground-level smoke concentrations for VSMOKE. From
Lavdas (1996)

burning period (1300-1700 h local time) along with a nocturnal smoldering compo-
nent. Prescribed fires default to a time profile generated by the Fire Emissions Produc-
tion System, which is based on simple rise and decay curves initially derived for esti-
mating emissions from coniferous logging slash in the Pacific Northwest (Sandberg
and Peterson 1984).

Validation efforts for older versions of the BlueSky framework found a tendency
to underestimate near-field surface smoke concentrations while potentially over-
estimating far-field surface smoke concentrations (Riebau et al. 2006). Sensitivity
studies found that predictions of surface smoke concentrations could be improved
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Fig. 3.4 Overview of BlueSky smoke modeling framework. Adapted from Goodrick et al. (2012)

by splitting fires into multiple emissions sources, effectively mimicking the concept
of multiple updraft core plumes (Solomon 2007). A subsequent study of the 2008
northern California wildfires found that BlueSky predictions of PM, s were in closer
agreement with observations in both the near- and far-field (Strand et al. 2012). This
simple application of the core plume concept with multiple updrafts is an example
of a research tool transitioning to operations.

3.2.1.2 Research Tools

Although a wide range of research tools could be discussed in this section, our focus is
on those tools that can provide insight into improving the representation of wildland
fires within smoke dispersion models. This is not an exhaustive list, but a sampling
of tools that are advancing our knowledge of the linkage between the fire and smoke
dispersion processes.

DaySmoke

DaySmoke is a hybrid plume particle model that consists of four sub-models: an
entraining turret model, a detraining particle model, a model of large-eddy parame-
terization for the mixed boundary layer, and a relative emissions model that describes
the emission history of the prescribed burn (Achtemeier et al. 2011). The entraining
turret model handles the convective lift phase of plume development and represents
the updraft within a buoyant plume. This updraft is not constrained to remain within
the mixed layer. A burn in DaySmoke may have multiple, simultaneous updraft
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cores. In comparison with single-core updrafts, multiple-core updrafts have smaller
updraft velocities, are smaller in diameter, are more affected by entrainment, and are
therefore less efficient in the vertical transport of smoke.

The importance of multiple-core updraft plumes was demonstrated with the Brush
Creek prescribed burn in eastern Tennessee on March 18, 2006, where visual obser-
vations identified between 1 and 5 cores throughout the duration of the fire (Jackson
et al. 2007; Liu et al. 2010). DaySmoke simulations with 1 to 10 updraft cores
produced estimates of hourly PM; s concentrations in Asheville, North Carolina,
ranging from 45 mg m~3 (single updraft core) to 240 mg m~> (10 updraft cores).
The simulation with 4 updraft cores produced an hourly peak PM; s concentration of
140 mg m~3, which agreed well with observations at the air quality monitor location
in Asheville.

In applying the Fourier amplitude sensitivity test (FAST) to DaySmoke simula-
tions of prescribed burning in the southeastern USA, the most important parameters
for determining plume rise were the entrainment coefficient and number of updraft
cores (Liu et al. 2010). Both of these parameters relate to the distribution of heat
across the landscape as temperature gradients enhance turbulent mixing and there-
fore entrainment. Areas of elevated fire intensity indicate enhanced buoyancy and
therefore stronger updrafts.

Although DaySmoke can represent multiple core updrafts, it has no method
for determining the appropriate number of cores to include. Achtemeier et al.
(2012) determined the number of updraft cores by linking DaySmoke to a cellular
automata fire model, tested on an aerial ignition prescribed burn conducted at Eglin
AFB on February 6, 2011, as part of the Prescribed Fire Combustion and Atmo-
spheric Dynamics Research (RxCADRE) collaborative research project. Originally
described by Achtemeier (2013), the fire model incorporates a two-dimensional
wind flow model to represent coupled fire—atmosphere circulations and provides
DaySmoke with the following input information: (1) 2-m winds for calculating indraft
velocities and estimates for calculating initial plume updraft velocities, (2) location
and number of updraft cores, (3) approximate initial plume diameter, and (4) rela-
tive emissions production. During the simulation of the RxCADRE burn, pressure
anomalies were as low as —1.4 mb, and the number of updraft cores ranged from
1 to 6 but typically was 4. Figure 3.5 shows the distribution of fire and associated
pressure anomalies.

The coupled DaySmoke simulation produced a strong vertical plume that extended
1000 m above the mixing height and resulted in the majority of the flaming
phase emissions being injected above the mixed layer. The observed plume heights
measured with a ceilometer verified the model results, as did minimal ground-
level smoke concentrations measured by a small network of downwind particulate
samplers (Achtemeier et al. 2012). Linking a fire model with the dispersion model
allowed the simulated plume to provide burn managers with more accurate infor-
mation for their ignition planning. Linking a fire model with a smoke plume model
also improved descriptions of the fire as input into the smoke model (Achtemeier
et al. 2012). Tools that more strongly couple the fire and atmosphere promise further
benefits.
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Fig. 3.5 Pressure anomalies (white lines) generated by the Achtemeier et al. (2012) fire model
at 12:40:41. The yellow ellipses highlight centers that might correspond to updraft cores. From
Achtemeier et al. (2012)

WRF-SFIRE

Kochanski et al. (2016) proposed an integrated system for fire, smoke, and air quality
simulations by coupling WRF-SFIRE with WRF-Chem to construct an integrated
forecast system for wildfire behavior and smoke prediction (Fig. 3.6). The Weather
Research and Forecast (WRF) model is a mesoscale numerical weather prediction
system designed for both atmospheric research and operational forecasting applica-
tions (Skamarock et al. 2008). WREF is designed to allow for incorporation of new
functionalities: WRF-SFIRE and WRF-Chem are two extensions to the WRF model.
WREF-SFIRE is a two-way, coupled fire—atmosphere model that estimates fire spread
based on local meteorological conditions, taking into account feedback between the
fire and atmosphere (Mandel et al. 2011, 2014). WRF provides a multi-scale domain,
with fine scales for modeling fire behavior nested inside coarser scales for resolving
the larger-scale synoptic flow.

WRF-Chem is a chemical transport model used to investigate regional-scale air
quality by simulating the emission, transport, mixing, and chemical transformation
of trace gases and aerosols simultaneously with meteorology (Grell et al. 2005).
In current operational modeling frameworks, prescribed fire activity and fire emis-
sions are simplified to a single plume whose vertical extent is estimated by a simple
plume-rise model. However, with the coupled WRF-SFIRE-Chem system, pyro-
plume development, smoke dispersion, and air quality impacts are comprehensively
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modeled by one system that includes fire spread, heat release, fire emissions, fire
plume rise, and smoke transport and dispersion with associated plume chemistry.

Application of the WRF-SFIRE-Chem system on two California fires, the 2007
Witch/Guejito fires and the 2012 Barker Canyon fire, yielded promising results
(Kochanski et al. 2016). For the Witch/Guejito fire, simulated and observed local-
and long-range fire spread and smoke transport agreed well, but ozone, PM; s, and
NO concentrations were generally underestimated in the simulations. Simulated
plume-top heights exhibited considerable variation throughout the day, with the stan-
dard deviation of time-averaged plume heights as high as 600 m. The simulations
clearly exhibited multiple plume-rise peaks associated with multiple core updrafts
and reinforced that a single Gaussian-shaped plume and injection height provides an
unrealistic representation of a wildfire plume.

Simulations of several large 2015 wildfires in northern California highlighted
the ability of the WRF-SFIRE-Chem system to capture feedback effects between
smoke and weather (Kochanski et al. 2019). Smoke from the wildfires induced a
positive feedback loop in which aerosols aloft in the smoke plume absorbed incoming
solar radiation, warming the top of the plume. Less solar radiation was received
at the ground, resulting in surface cooling. This warming aloft and cooling below
develops a local smoke-enhanced inversion that inhibits the growth of the planetary
boundary layer and reduces surface winds, resulting in smoke accumulation that
further reduces near-surface temperatures. Such results are possible only in a system
that fully integrates fire and smoke processes within the weather model.
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MesoNH-ForeFire

Similar to WRF-SFIRE, the European MesoNH-ForeFire modeling system combines
a fire area simulator and a mesoscale meteorological model to simulate fire—atmo-
sphere interactions (Filippi et al. 2011). The fire area simulator is based on the spread
model of Balbi et al. (2009) and describes the mean propagation velocity of the fire
front as a function of slope, surface wind speed, and fuel properties. Initial application
of MesoNH-ForeFire to real-case scenarios in predominantly Mediterranean Maquis
shrublands yielded plume structures that agreed qualitatively with photographs of
the plume, with distinct updrafts developing over each fire flank that merge over the
head of the fire. Although the model produced some of the observed plume struc-
tures, the 50-m grid used in the atmospheric simulation limited the model’s ability
to reproduce finer-scale structures. In a more recent study using a finer grid resolu-
tion, MesoNH-ForeFire plumes compared well with Lidar-based plume observations
(Leroy-Cancellieri et al. 2014). The more refined model grid improved the represen-
tation of the fire in space and time, resulting in improved forcing of the atmospheric
processes governing plume behavior.

CAWFE

The Coupled Atmosphere Wildland Fire Environment (CAWFE) is an alternative
system that employs a numerical weather prediction model designed specifically for
simulating small-scale weather processes in complex terrain (Clark and Hall 1991;
Clark et al. 1996, 1997; Coen 2013). Coupling of numerical weather prediction
models to fire-spread simulations provides many benefits, as the coupling allows
dynamic interaction among the components of the fire environment.

However, fire presents an interesting problem to many weather models, depending
on their formulation and inherent assumptions. Models such as WRF are designed
to simulate a broad range of weather phenomena ranging from hundreds of meters
to tens of kilometers. This flexibility and scalability do not come without a cost.
Models designed for these scales tend to dissipate energy at fine scales due to choices
in numerical schemes used in its solver and grid refinement methodology. Thus, the
model tends to dissipate energy at the scales that the fire is trying to add energy.

The fire component of CAWFE is a front-tracking approach similar to that of
WREF-SFIRE. CAWFE simulations helped Coen et al. (2018) evaluate the relative
roles of climate, fuel accumulation, and forest structure changes tied to fire exclusion,
and nonlinear effects tied to dynamic coupling of fire environment components on
the 2014 King fire (California). The CAWFE atmospheric formulation has shown
promise in reproducing significant features of major wildfire events, such as a 25-km
up-canyon run on the King fire (Coen et al. 2018), but its less dissipative nature may
be more applicable for lower-intensity prescribed fires.
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FIRETEC and WFDS-PB

FIRETEC (Linn et al. 2003) and the Wildland Urban Interface Fire Dynamics Simu-
lator (WFDS-PB; Mell et al. 2009) are physics-based fire models that use a finite-
volume, large-eddy simulation approach to model the atmosphere. FIRETEC (Linn
etal. 2003) is a 3D model designed to simulate the constantly evolving relationships
between wildland fire and its environment. FIRETEC describes a range of processes
that drive fire behavior and how these processes interact with the overlying atmo-
sphere (Fig. 3.9). Vegetation is described as a highly porous 3D medium characterized
by bulk quantities (e.g., surface area-to-volume ratio, moisture content, bulk density)
of the thermally thin components of the vegetation. FIRETEC and WFDS-PB have
been used to simulate crown fires (Linn et al. 2012; Hoffman et al. 2016), bark beetle
effects on fire behavior (Hoffman et al. 2013; Linn et al. 2013), and fireline inter-
actions (Morvan et al. 2011, 2013). The primary drawback of such physics-based
models is the very high computation requirements inherent in the fine resolution of
the computational grid (1-2 m).

The WFDS model builds on the Fire Dynamics Simulator, which was developed by
the National Institute of Standards and Technology to model structural fire. WFDS
is intended to help understand fine-scale fire behavior within wildland fires and
between wildland and developed areas. WFDS uses computational fluid dynamics
to represent buoyant flow, heat transfer, combustion, and thermal degradation of
vegetative fuels. This approach uses large-eddy simulation to solve the gas-phase
equations on computational grids that are too coarse to directly resolve the detailed
physical phenomena.

Computational costs can be lowered by implementing a “level-set method” to
propagate the fireline (e.g., WFDS-LS; Bova et al. 2016). This numerical technique
tracks the evolution of an interface between two locations (e.g., burned and unburned
fuels), thus simplifying issues from merging and splitting fronts that are difficult to
track (Mallet et al. 2009). Explicitly resolving gas-phase combustion is not necessary
for smoke plume simulations of this scale if the heat release per unit area is known
(Liu et al. 2019). Models such as WFDS can be used to inform our ability to design
communities to withstand an approaching wildfire.

3.2.2 Remote Sensing

Although models provide one means of developing a more complete description of
a fire for input into smoke models, empirical observations are also a vital source of
information about individual fires and for fire model verification. Wildland fires are
difficult to measure due to high temperatures, but many remote sensing techniques
have emerged over the last 20 years that are capable of observing wildland fires
across a broad range of spatial and temporal scales. This approach is often capable
of deriving spatial and temporal distributions of heat release as inputs for smoke
models.
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3.2.2.1 Fire Area

Measurements of area burned are critical for estimating fire emissions, which are one
of the largest sources of potential error in modeling (Soja et al. 2009). As described in
Chap. 2, satellites provide a consistent means for estimating burned area. Two satellite
platforms commonly used for estimating burned area are the Geostationary Opera-
tional Environmental Satellite (GOES) and Moderate Resolution Imaging Spectrora-
diometer (MODIS). The GOES product is geosynchronous with temporal resolutions
of 5 min for the Fire Detection and Characterization Algorithm (FDCA) at the cost
of relatively low resolution of 2 km. Despite geostationary satellites tending to have
coarser resolution than polar orbiters, the more frequent observations have shown
utility beyond just detection. For example, Liu et al. (2018) were able to extract near
real-time rate-of-spread estimates for fires in Western Australia using data from the
Himawari-8 satellite.

The polar-orbiting MODIS instruments provide improved spatial resolution of
500 m but at lower temporal resolution of 4 overpasses per day. The GOES and
MODIS products capture the inherent tradeoff between spatial and temporal reso-
lution which limits their current utility for describing the evolution of fire events.
Satellite products successfully capture large wildfires that account for the majority
of emissions (Soja et al. 2009), but are less useful for prescribed fires due to a low
detection rate as most prescribed fires are of lower intensity and shorter duration
(Nowell et al. 2018). Although satellite instruments and algorithms will continue
to advance, alternative instrument platforms, such as aircraft and unmanned aircraft
systems (UASs), provide better spatial and temporal resolution for select events.

3.2.2.2 Energy Release

Knowing the fire location is the first step in describing a fire for use in smoke models.
The next piece is knowing the rate and amount of heat released. Measurements of
Fire Radiative Power (FRP) detect the rate of radiant heat output from a fire, and
FRP integrated over time provides an estimate of the fire radiative energy (FRE),
which is proportional to the total mass of fuel biomass consumed (Chap. 2). In
their review of fire meteorology, Kremens et al. (2010) outlined several methods for
estimating the energy radiated by the combustion of fuels within each fire-affected
pixel (Kaufman et al. 1996; Butler et al. 2004; Riggan et al. 2004; Ichoku and
Kaufman 2005; Smith and Wooster 2005). The FRP and (by time integration) FRE
are calculated by combining two infrared bands to estimate the mean radiant fire
temperature and emissivity-area product for an individual pixel (Dozier 1981; Matson
and Dozier 1981; Riggan et al. 2004).

In an examination of the 2013 Rim Fire (California), Peterson et al. (2015)
employed FRP estimates from the GOES-14 satellite to study extreme fire spread
and pyroconvection. Peaks in FRP during the Rim Fire likely coincided with the
most intense burning (Fig. 3.7). Although diurnal variability in FRP is evident, it is
equally evident that variation in FRP does not follow a simple diurnal distribution as
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Fig. 3.7 Time series of normalized hourly FRP from GOES-West (black) and cumulative fire area
derived from National Infrared Operations observations (red). Spread events 1 and 2 are highlighted
with yellow shading, and the pyroCb events of 19 August and 21 August are denoted by dashed
brown vertical lines. From Peterson et al. (2015)

described for the Western Regional Air Partnership and Western Governors Associa-
tion (Air Resources Inc. 2005). The co-occurrence of high FRP on days with weaker
atmospheric stability is likely tied to a greater vertical extent of the smoke plumes
and an enhanced probability of smoke injection into the free troposphere (Val Martin
et al. 2010; Peterson et al. 2014).

Satellites are not the only remote sensing platforms from which fire informa-
tion can be derived. One example of an aircraft-based platform, the FireMapper
thermal-imaging radiometer, allows quantitative measurements of fire-spread rates,
fire temperatures, radiant-energy flux, residence time, and fireline geometry (Riggan
et al. 2010). Figure 3.8 is a FireMapper thermal image of the Esperanza Fire (Cali-
fornia) depicting thermal anomalies indicative of biomass burning on October 26,
2006, between 14:07 and 14:17 PDT (Fig. 3.9).

Coen and Riggan (2014) examined the Esperanza Fire to test the CAWFE model
and examined how dynamic interactions of the atmosphere with large-scale fire
spread and energy release affect observed patterns of fire behavior as mapped by
FireMapper. This is a case of FireMapper being used to verify a model projection of
fire behavior. The CAWFE simulation correctly depicted the fire location at the time
of an early-morning incident involving firefighter fatalities. Periods of deep plume
growth were also well captured by the model and verified by FireMapper, highlighting
the importance of fire—atmosphere coupling in reproducing the evolution of a fire.
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Fig. 3.8 FireMapper thermal image of the Esperanza Fire (southern California), showing thermal
anomalies indicative of biomass burning on October 26, 2006, between 14:07 and 14:17 PDT.
Higher fire intensity is indicated by orange and yellow pixels. From Riggan et al. (2010)

3.2.3 Effects of Management Actions

3.2.3.1 Prescribed Fire

A shortcoming of many fire behavior tools is their inability to consider interactions
between multiple lines of fire (e.g., counter-firing operations); operational tools do
not account for convective heating or interactions between multiple heat sources and
are typically limited to describing fire behavior for a point ignition spreading in a
homogeneous environment (Furman et al. 2019; Hiers et al. 2020). Fire operations
are planned to accomplish multiple, specific objectives. Prescribed fire objectives
often include maintaining fire within a limited range of intensities (e.g., rates of
spread, flame lengths) to minimize damage to the resource but supply enough heat
to aid in smoke transport and dispersion. A key part of the burn plan is developing
sufficient heat to generate a plume that rises above the mixed layer such that surface
impacts to nearby communities are minimized (Achtemeier et al. 2012).

The widely used Briggs plume-rise schemes used in air quality forecasting assume
the plume rises through a passive environment that does not consider the complex
ways a fire and the environment interact (Moisseeva and Stull 2020). Neglecting
such interactions can lead to overestimation of plume rise and underestimation of
surface smoke concentration for “highly tilted” plumes characterized by weak buoy-
ancy and strong winds (Achtemeier et al. 2011), or underestimation of plume rise
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and subsequent overestimation of surface smoke concentration for strongly buoyant
plumes (Achtemeier et al. 2012).

Using FIRETEC, Furman et al. (2019) examined whether a coupled fire—atmo-
sphere model could reproduce a range of fire phenomena common to prescribed
fires. They examined questions that current operational tools are ill-suited to answer,
including:

e How does distance between lines of fires and multiple ignition points affect fire
intensity and plume lofting?
How does spot ignition moderate fire intensity compared to line ignition?
How does unit boundary ignition affect fire behavior and fire effects in the interior
of the burned area?

e How do mid-story vegetation and other forest structure variables influence wind
fields and resulting fire behavior?

Furman et al. (2019) evaluated different ignition patterns for prescribed fires in
longleaf pine (Pinus palustris) forest fuels. Figure 3.10 illustrates FIRETEC results
that depict general fire phenomenology associated with multiple ignition lines ignited
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breaks and therefore do not show the entire computation domain. From Furman et al. (2019)

by all-terrain vehicles (AT Vs). Higher fire behavior and mid-story/canopy consump-
tion in response to an increased number of simultaneous ignition lines (Fig. 3.10)
is common knowledge among experienced prescribed fire managers. However, the
effects of line spacing on convective lift and subsequent plume lofting were not as
well known (Figs. 3.11 and 3.12). These FIRETEC simulations revealed that the AT V-
ignition strip-head fires reached greater plume height and volume than the plastic
sphere dispenser (or “ping pong ball”) aerial ignition, as the small individual igni-
tions of the aerial ignition were widely dispersed and burned together more slowly
than solid lines ignited by the ATVs.

A new simulation tool called QUIC-Fire (Linn et al. 2020) is designed to rapidly
simulate fire—atmosphere feedbacks by coupling the 3D rapid wind solver QUIC-
URB to a physics-based cellular automata fire-spread model (Fire-CA). QUIC-Fire
uses 3D fuels inputs similar to those used by the CFD-based FIRETEC model,
allowing this tool to simulate the effects of fuel structure on local winds and fire
behavior. Preliminary comparisons between QUIC-Fire and FIRETEC show that
the model outputs agree well. QUIC-Fire is the first tool intended to provide an
opportunity for prescribed fire planners to compare, evaluate, and design burn plans,
including complex ignition patterns and coupled fire-atmospheric feedback. Addi-
tional work to incorporate process-based emissions production into QUIC-Fire has
also shown promise (Josephson et al. 2020).
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3.3 Gaps in Understanding the Link Between Fire
Behavior and Plume Dynamics

Many current smoke modeling tools have a number of limitations that are largely
linked to the fire event not being an explicit part of the simulation (Liu et al. 2019).
By excluding the fire event from the simulation, these tools are unable to incorporate
detailed and rapidly varying spatial distributions of heat release across the landscape,
which links the fire source to the atmosphere, often leading to the development of
multiple plume cores. In addition, emissions must be estimated with a method such
as climatological diurnal trends as in the Global Fire Emissions Database (Randerson
et al. 2017) or the Smoke Emissions Reference Application database (Prichard et al.
2020).

Advancing our modeling capability beyond these empirically derived methods
and toward more process-based methods is critical for predicting emissions in the
no-analog climate expected in future decades. Making this shift to process-based
models requires an improved understanding of fire and smoke processes, as well
as collecting data tailored to rigorous testing, evaluation, and validation of model
performance under real-world conditions (Liu et al. 2019).

Many currently available observational datasets are not suitable for evaluating
coupled fire—atmosphere models, because these tools require integrated datasets that
comprehensively characterize fuels, energy released, local micrometeorology, plume
dynamics, and smoke chemistry (Alexander and Cruz 2013; Cruz and Alexander
2013). To fill such data gaps, several field campaigns have been conducted or are
planned in the USA. In 2012, the RXCADRE field campaign collected integrated
data on fuels, fire behavior, fire effects, and smoke on large prescribed fires at Eglin
Air Force Base (Florida) for the specific purpose of evaluating fire and smoke models
(Ottmaretal. 2016). The RxCADRE data are currently being used to evaluate coupled
fire—atmosphere modeling systems.

Moisseeva and Stull (2020) examined plume rise from an experimental burn of
the RcCADRE campaign, using WRF-SFIRE by taking advantage of the combined
fire behavior and plume measurements collected by the project. Their model
results capture the timing, rise, and dispersion of the fire plume reasonably well
compared with observations of emissions and dispersion data collected from an
airborne platform during the experiment. Although the plume observations available
in RXCADRE were limited, other efforts are working to increase the amount
and quality of plume observations, including the Fire Influence on Regional and
Global Environments Experiment (FIREX-AQ) (Warneke et al. 2018), Western
Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen
(WE-CAN) project (https://www.eol.ucar.edu/field_projects/we-can), and Fire and
Smoke Model Evaluation Experiment (FASMEE) (Prichard et al. 2019). Liu et al
(2019) has outlined specific information needed to advance our knowledge of
fire—atmosphere coupling and its ties to plume dynamics (Chap. 4) (Fig. 3.13).
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Fig. 3.13 Schematic representation of the Fire and Smoke Model Evaluation Experiment
(FASMEE) project measurement platforms. From Liu et al. (2019)

3.3.1 Heat Release

Measurements of fire-base depth, spread rate, and total mass consumption during
flaming can be used to calculate a first-order estimate of heat release per unit area for
fire behavior model validation and as inputs for smoke models. Note that a single-
point measurement can be misleading, because firelines are not uniform. For this
reason, a more complete set of measurements to support model testing would provide
the fire-base depth, spread rate, and total mass consumption along the fire perimeter.
Furthermore, surface heat is vertically distributed over the first few grid-cell layers in
some fire—atmosphere coupled models (e.g., WRF-SFIRE), which means the appro-
priate vertical decay scale (extinction depth) needs to be assessed. Also, fire heat
varies in both space and time, leading to complex dynamical structures of smoke
plumes. Dynamical structure is an important factor for the formation of separate
smoke plume cores. Measurements of the structures together with smoke dynamics
are needed to understand the relations of smoke dynamics to horizontal and vertical
heat fluxes (radiative and convective) during fires.
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3.3.2 Fire Spread

Fire spread is important for determining fuel consumption and spatial and temporal
variation of heat release, burned area, and burn duration. Lateral fire progression,
spread perpendicular to the predominant wind direction, is particularly affected by
atmospheric turbulence. In models such as WRF-SFIRE, the lateral rate of spread
is parameterized using (1) local wind perturbations normal to the flank, and (2) the
Rothermel formula (Rothermel 1972) for head-fire rate of spread. Some of these
normal wind perturbations can be created by fine-scale differences in topography,
fuels, and pressure gradients that are dampened or smoothed; these differences are not
neglected in the WRF scheme and are partially preserved in the CAWFE modeling
scheme. Characterization of lateral fire spread and atmospheric turbulence, in concert
with variation in fuel and topography, is needed to validate and improve this approach
(Bebieva et al. 2020). We must better understand where WRF-SFIRE type simplifi-
cations are “good enough,” or when fine-scale modeling of fuels and topography to
produce wind perturbations are necessary (Coen 2018).

3.3.3 Plume Cores

Individual plume cores within a smoke plume are highly dynamic, often forming
as a result of local fuel accumulations and ignition processes. Once formed, they
can instantly affect heat fluxes, exit velocity, and temperature, which are important
for smoke plume rise and vertical profile simulation. Despite their importance, the
number of plume cores is rarely noted for prescribed burns. Because the dynamic
nature of plume cores makes them difficult to define and track, observational and
modeling evidence is needed to understand the roles of sub-plumes.

3.4 Vision for Improving Smoke Science

A scale-appropriate abstraction of fire is needed to supply heat and emissions
to smoke models. The typical current level of abstraction—representing a fire as
a simple point-source with either a constant emission rate or diurnal emissions
profile—may be appropriate for coarse-scale continental assessments. However,
smoke models are often used to address a range of scales for local visibility and
air quality concerns where a more detailed description of a fire in space and time
may be required for accurate results. At the local scale, the modeling approach of
Kochanski et al (2019) captures the coupling between fire and atmosphere to provide
a detailed abstraction of the smoke source. This coupled approach is also ideal for
prescribed fire applications, because it allows for complex ignition patterns common
in prescribed fire operations.
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Between these two extremes in scale lies the regional scale where the simple point-
source is inadequate; as at finer scales, we must begin to account for variations in fuels
and fire geometry that influence plume organization and lead to near-field underes-
timation and far-field overestimation of surface smoke concentrations (Riebau et al.
2006). The fully coupled approach of the local scale may become too computation-
ally intensive at the regional scale to be useful for forecasting as the number of fires
in a region increases. At regional scales, a more flexible abstraction of the fire event
is required that differs in level of detail between the two extremes.

Coupled models such as FIRETEC, WFDS, CAWFE, QUIC-Fire, and WRF-
SFIRE could be the central tools in developing such an abstraction. Running a series
of simulations with these models with known fire behavior and plume behavior
at a range of spatial scales would allow for calculating plume rise and fine-scale
wind perturbations along ignition perimeters. This would include common ignition
methods for prescribed fire, such as aerial ignitions, strip-head fires, and spot igni-
tions. These relationships would connect some basic information about the ignition
(e.g., line spacing) and return appropriate inputs of heat and emissions through time,
scaled to the spatial and temporal elements of the burn unit. For coupled models in
these scenarios, developing multiple-core updrafts would be explicitly simulated as
the atmosphere responds to the distribution of heat across the landscape, effectively
building this fine-scale process into quantitative relationships. An important outcome
would be improved estimates of plume rise for use in dispersion models (Chap. 4).

Advances in modeling heat release from wildland fires must be accompanied by
advances in our ability to observe fires. Technological advances and improved afford-
ability of both sensors and sensor platforms are revolutionizing our ability to collect
information on wildland fires. Sensor systems which were previously cost prohibitive
for widespread use in fire research, such as hyperspectral cameras, image intensifiers,
and thermal cameras, are now less expensive and are being more commonly used.
Allison et al. (2016) provide a review of the application of a number of these tech-
nologies to wildfire detection and monitoring. The technology is advancing toward
an integrated hierarchical system of sensors that combine continuous monitoring for
early detection with field-deployable small sensing platforms to provide detailed data
for specific fire incidents.

Challenges identified by Allison et al. (2016) include developing robust automatic
detection algorithms, integrating sensors of varying capabilities and modalities, and
developing best practices for introducing new sensor platforms (e.g., small UASs) in
a safe and effective manner within a fire perimeter. Image processing techniques are
advancing rapidly due to increased computing power and the emergence of machine
learning tools. Moran et al. (2019) describe a hybrid threshold gradient method
for detecting areas of flaming combustion that combines the use of a temperature
threshold value such as the Draper point (525 °C) with a gradient-based edge detec-
tion algorithm. This combined approach yields solutions that maintain observed
variability while maximizing indifference to sensor resolution and spectral band
differences.

Zhao et al. (2018) demonstrated the effectiveness of using saliency detection
combined with a deep convolutional neural network to segment wildfire images
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into regions of smoke, flaming combustion, and burned areas. Deep convolutional
neural networks are a state-of-the-art machine learning method for image recognition
(Lecun et al. 2015), and saliency detection extracts core objects from a complicated
scene (Itti et al. 1998). Combining these techniques provides a more robust solution,
as individual images are broken down into a set of core objects which are then
compared by the neural network.

Adding to the value of new imaging techniques and platforms is the ability to
integrate information across sensors and platforms to provide an enhanced view of the
environment. Jimenez et al. (2018) describe an experimental design and preliminary
results for linking highly resolved ground-based fire measurements collocated with
in situ and thermography remotely sensed by UASs. Linkage of the in situ and
UAS thermography offers an opportunity to link the combustion environment with
post-fire processes and wildland fire modeling efforts across a broader spatial scale.

Fassnacht et al. (2021) combined satellite-based differenced Normalized Burn
Ratio (ANBR) information with high-resolution orthoimages from a UAS to identify
sources of variability in satellite data related to pre- and post-fire vegetation structure.
Their results suggest that the fraction of consumed canopy cover, along with shadows
of snags and standing dead trees with remaining crown structure, influenced what
the satellite detects, providing an underestimate of dNBR. Improving our ability
to examine the fire environment across scales will improve our understanding of
variability in the data and inform modeling of fire processes.

3.5 Emerging Issues and Challenges

3.5.1 Magnitude of Fire and Smoke Impacts

In recent years, prominent smoke impacts have been observed in many locations
in the USA. In California, long-duration smoke events—termed “smoke waves” by
Liu et al. (2016)—are now emitting enough PM, 5 to become the primary source in
the annual emissions inventory. The modeling work of Koman et al. (2019) found
that 97.4% of California residents lived in a county with at least one smoke wave
during the 2007-2013 study period, and 24.7% of the population lived in a county
averaging at least one smoke wave per year. Based on data from the California Air
Resources Board (CARB 2020), for the period 2014-2019, the average annual area
burned was 34% higher and the PM; 5 emissions from wildfires 43% higher than
during the study period of Koman et al. (2019), indicating that smoke-wave events
were more common in recent years.
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3.5.2 Managing Fuels to Minimize Air Quality Impacts

Attheroot of increasing impacts on regional air quality is accumulation of fuels on the
landscape, exacerbated by a warming climate that is creating increased likelihood and
opportunities for fuels to drive extreme fire behavior, thus leading to an extended
duration of smoke waves (Chap. 2). These impacts are not necessarily uniform,
predictable, or even consistent from one year to the next, one fire to the next, or one
day to the next for a given fire. Fuel continuity as affected by fire exclusion, previous
wildfire and other disturbance footprints, and previous fuel treatments interact with
weather (and climate) to create the conditions for large-fire growth and smoke waves.

Koontz et al. (2020) showed that fire severity (damage to natural resources, typi-
cally mortality in overstory trees) in dry forests of the Sierra Nevada (California)
was higher in forests with higher homogeneity of fuels at all scales above 90 m
(the smallest scale tested). The resilience of these forests, which may have been
reduced by structural homogenization caused by several decades of fire exclusion,
could be restored with management that targets increased forest structural variability
(Chap. 8). A smoke modeling framework that links changes in forest structure and
associated changes in fire behavior at fine scale (<90 m, and probably <30 m) with
plume development and smoke dispersion could evaluate the potential for fuel reduc-
tion treatments to limit smoke-wave impacts. From the perspective of operations,
planning, and State Implementation Plans this modeling ability could provide a foun-
dation for strategic application of fuel reductions, thus informing prioritization of
treatments that would minimize smoke impacts.

3.5.3 Need for Dispersion Climatologies

Simultaneous, Monte Carlo modeling of fuels, fire, smoke emissions, and mete-
orology from micro- to mesoscales is beyond current computational capabilities,
thus complicating assessment of model sensitivities (Bakhshaii and Johnson 2019).
Kochanski et al. (2019) provided an example of potential sensitivity, showing
that spatial resolutions of 1.3 km or finer were required to resolve canyon winds
and smoke-enhanced inversions in the complex terrain of the Klamath Moun-
tains (California), an area characterized by steep elevations and relatively fine-scale
“corrugation” of the landscape.

Integrating smoke climatologies (Kaulfus et al. 2017), high-resolution modeling
(Kochanski etal. 2019; Kiefer et al. 2019), and reanalysis climatologies may provide a
tool for linking regional weather patterns with dispersion and spread parameter sensi-
tivities, as the plume climatologies provide constraints against which to test models.
Such climatologies would allow us to develop scenario-based, high-resolution, and
atmospherically coupled modeling exercises on these “modes” of transport; devel-
oping a library of likely dispersion scenarios that could be used operationally for
wildfires and planning prescribed fires across large landscapes.
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Table 3.1 Atmosphere-fire models cited in the text, including appropriate spatial and temporal
scales for their use

Model Coupling | Spatial scale | Domain area | Temporal | CPU usage
method scale
FIRETEC One way |1-5m 1-5 km? Is2h No real time
WEFDS-PB One way |1 mm-10m 1-5 km? 1s4h No real time
CAWFE Two way | 10 m-30 m 1-10 km? 1s-h No real time
WREF-SFIRE Two way |10 m—10km | 1-km? 1 s—days Real time
MesoNH-ForeFire Two way | 10 m—1 km 1-100 km? 1s-h Approx. real
time

ARPS/DEVS-FIRE | Two way |10 m-1 km 1-100 km? 1s-h No real time

Adapted from Bakhshaii and Johnson (2019)

3.5.4 When and Where is Coupled Fire—-Atmosphere
Modeling Needed?

The coupled fire—atmosphere models discussed in this chapter would seem ideal
for providing time-varying inputs of emissions and heat release for use with smoke
dispersion tools, but these models should not be viewed as a universal solution,
because each model has characteristics best suited to different spatial and temporal
scales (Table 3.1). Among the coupled models using numerical weather prediction
models, differences in semiempirical assumptions inherent in model formulation
affect model performance, depending on the degree of topographic complexity and
synoptic conditions (Coen 2018).

When large-scale synoptic conditions are the dominant driver of fire spread, the
simplifying assumptions used by WRF-SFIRE (Kochanski et al. 2013) show promise
and allow for real-time forecasting with modern 100-plus processor computing clus-
ters (Kochanski et al. 2019). As topographic slopes exceed 40°, and fine-scale fuel
consumption and fire-induced winds start driving fire behavior, the WRF-SFIRE
approach may be limited due to the aggressive dissipation of fine-scale motions and
gradients that occur under these conditions (Coen 2018).

Finer-scale models such as CAWFE may improve the resolution of fire-induced
flows but lack the ability to do so operationally until faster computers or more compu-
tationally efficient approaches are available. However, these retrospective approaches
have the potential to help in planning and prioritizing areas of the landscape where
fuels, weather, and topography might create fire—atmosphere coupling characteristic
of some large wildfires [e.g., the previously mentioned Rim fire (Peterson et al. 2015)
and King fire (Coen et al. 2018)].
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3.6 Conclusions

This chapter focuses on how fire events are described in the smoke modeling process
and how these descriptions can reduce the error associated with forcing a fire to
conform to an idealized anthropogenic emissions source, such as a point source
(e.g., industrial stack emissions). Liu et al. (2019) highlighted several needs for
next-generation smoke research and forecasting systems:

e Acquire dynamic and high-resolution fire energy and emissions information for
smoke modeling of large burns.

e Improve the capability to describe multiple sub-plumes and understand mecha-
nisms governing their evolution.

e Understand feedbacks between atmospheric disturbances induced by fire and
smoke processes.

e Link combustion processes to speciation of fire emissions across fuel types and
combustion conditions.

Achieving such model improvements requires extensive and detailed observations
of the spatial and temporal evolution of heat released by wildland fires, as heat release
connects the fire to the overlying smoke plume. Remote sensing provides a safe and
reliable means of collecting such observations. The emergence of new observing plat-
forms such as small UASs and thermal sensors, combined with new processing tech-
niques allowing integration of multiple data streams, will help improve the temporal
and spatial resolution of heat release measurements at scales appropriate for model
development. Integrated field campaigns such as FASMEE (Prichard et al. 2019) that
seek to measure the fire environment as thoroughly as possible will help facilitate the
transition of new modeling tools from research to operations by providing a testbed
for developing the data necessary for model advancements.

3.7 Key Findings

e Wildland fires are poorly described as emission sources in current operational
smoke modeling tools. Fires are complex emission sources that evolve through
time and are not well represented as traditional point, line, or area sources used
in air quality models.

® A number of newer research tools have improved descriptions of wildland fires
as heat and emission sources. Transitioning such tools to operations will require
further data collection for understanding model performance and uncertainty but
will enhance our ability to cope with evolving environmental conditions during
wildland fires.

e Remote sensing provides a robust platform for a wide range of fire measurements
such as energy release and fire area. Technological advances are expected to
improve sensor abilities in the future.
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3.8 Key Information Needs

In addition to the fuel information described in Chap. 2, key fire behavior and energy
release measurements include:

Quantitative fire radiation from satellite, airborne, and tower-based platforms.
Flame front dimensions and spread rates that include forward, lateral, and backing
spread.

e Combustion efficiency, and emissions partitioning between flaming and smol-
dering combustion.

e Convective fluxes are needed in space and through time as inputs to plume models.
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the increasing area burned by wildfires in the western USA. This chapter synthesizes
smoke plume research from the past decade to evaluate the current state of science
and identify future research needs. Major advances have been achieved in measure-
ments and modeling of smoke plume rise, dispersion, transport, and superfog; inter-
actions with fire, atmosphere, and canopy; and applications to smoke management.
The biggest remaining gaps are the lack of high-resolution coupled fire, smoke, and
atmospheric modeling systems, and simultaneous measurements of these compo-
nents. The science of smoke plume dynamics is likely to improve through develop-
ment and implementation of: improved observational capabilities and computational
power; new approaches and tools for data integration; varied levels of observations,
partnerships, and projects focused on field campaigns and operational management;
and new efforts to implement fire and stewardship strategies and transition research
on smoke dynamics into operational tools. Recent research on a number of key
smoke plume dynamics has improved our understanding of coupled smoke modeling
systems, modeling tools that use field campaign data, real-time smoke modeling and
prediction, and smoke from duff burning. This new research will lead to better predic-
tions of smoke production and transport, including the influence of a warmer climate
on smoke.

Keywords Measurement + Modeling - Management + Plume rise - Smoke
impacts + Smoke plume - Transport and dispersion

4.1 Introduction

4.1.1 Scientific Significance

The fate of smoke from a wildland fire depends in large part on the airflow carrying it
away from the fire which can involve a complex interaction of eddies that may occur
near the ground or expand beyond the atmospheric mixed layer. The buoyancy of
smoke and ambient atmospheric conditions determines how high and how quickly
the smoke rises, and thus where it travels. Understanding the processes that control
the movement and mixing of smoke is essential to any endeavor to predict (and
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manage) the impacts of smoke on public health and safety, including air quality,
visibility, aviation, and climate. These processes are commonly referred to as “plume
dynamics”.

An improved scientific understanding of smoke plume dynamics will allow for
more accurate assessments and predictions of the fate and impacts of wildland fire
emissions. These emissions are a major source of particulates, black carbon, and
organic carbon, and can contribute substantially to the formation of aerosols and
gases that comprise air pollution and haze (Baars et al. 2011; Strand et al. 2011;
Wiedinmyer et al. 2011; Larkin et al. 2014). The transport and deposition of black
carbon to the Arctic (Larkin et al. 2012; Hao et al. 2016) can reduce surface albedo
which enhances snow and ice melt (Evangeliou et al. 2016). Some wildland fire smoke
plumes can penetrate the tropopause and mix into the stratosphere to affect ozone,
carbon monoxide, carbon dioxide, reactive nitrogen, and water vapor concentrations
at high altitudes (Jost et al. 2004; Chap. 6).

Accurate characterization of smoke plume dynamics can improve our under-
standing of smoke impacts on atmospheric radiation, weather, climate, and photo-
chemical processes. Smoke particles modify atmospheric radiative transfer directly
through light scattering and absorption of solar radiation, and indirectly by influ-
encing cloud formation (Bauer and Menon 2012). This potentially changes atmo-
spheric temperature, stability, and convection. Depending on the photochemical envi-
ronment, ozone enhancement from biomass burning has been observed in many
instances (Brey and Fischer 2016). Smoke plume temperature usually decreases
with height, which affects photochemical reaction rates for ozone production (Lim
et al. 2019). This further affects secondary organic carbon (SOC) production.

Smoke plume dynamics provide the scientific foundation for developing predic-
tive models and tools appropriate for wildland fire applications. For example, plume
rise is an important property determining the local and regional impacts of smoke.
Emissions that remain within the mixing layer can be influenced by topography
(Chap. 5) and the diurnal change in the mixing layer, affecting local areas near the
fire site. In addition, a smoke plume can penetrate into the free atmosphere and
high lofted smoke particles can be transported tens of kilometers, affecting regional
air quality downwind. For example, locations in Idaho often receive smoke trans-
ported from California wildfires and ozone concentrations in eastern US cities can
be affected by long-range transport of smoke from Canada and the western USA
(Wilkins et al. 2020). Many smoke and air quality models require estimates of plume
rise, whereby particulates and gases emitted from wildland fires are distributed into
model-domain atmospheric layers above fires. Improvements in smoke modeling can
be made by basing these estimates on a sound scientific understanding of how fire-
induced convective plumes interact with the atmosphere, from the flaming regions
immediately above the fire to much higher in the atmosphere.
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4.1.2 Management Significance

The area burned by wildfire, fire severity, and the size of the largest fires have
increased in the USA over the past 20 years (Dennison et al. 2014). Smoke from
wildland fires has been associated with increased physician and emergency room
visits, hospital admissions, and mortality (Chap. 7). Illnesses attributed to smoke
exposure can also result in absences from work and school, affecting economic
productivity and educational achievement, respectively. Fires and smoke also are
increasingly affecting urban areas, leading to air pollution and visibility problems
(Mass and Ovens 2018). Dispersal of smoke across roadways and airports can be
a major concern as very high concentrations of fine particulates can significantly
reduce motorist visibility during both day and night.

Modeling wildland fire smoke plume dynamics helps provide important informa-
tion for decision makers and society (Chap. 8). An understanding of plume dynamics
contributes to an accurate air quality forecast and helps air quality and land managers
answer the most commonly asked public questions during smoke events: (1) Where
is the smoke coming from?, (2) How long will it last?, (3) What are the pollu-
tant concentrations?, and (4) Should I be concerned? Knowledge of the spatial and
temporal smoke patterns helps air quality forecasters warn a potentially affected
community of the likely location, magnitude, extent, and duration of smoke-related
air quality impacts, enabling people to modify their behavior to reduce exposure
to pollutants. This chapter therefore synthesizes existing research and knowledge
on smoke plume dynamics. The objectives are to assess the current state of science,
mainly based on studies conducted in the past decade, identify research gaps, provide
a vision for improving smoke dynamics science, and describe emerging issues and
challenges.

4.2 Current State of Science

4.2.1 Theoretical Framework

4.2.1.1 Conceptual Models

The simplest conceptual model of a plume begins with a point, or at least an axially
symmetric, uniform source (Fig. 4.1a). This is similar to the smokestack and math-
ematical plume models developed for smokestack plumes (Briggs 1982), which are
still the most common models used for plumes from wildfires. The plume simulated
using these models depends on buoyancy flux, stability, vertical profile of wind,
and distance in the downwind direction from a fire, expanding as it mixes with the
environment.
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Fig. 4.1 Conceptual smoke plume models. a Axisymmetric, simple updraft plume model. b Simple
wildland fire plume model; a fire with a flaming front and weaker flanks produces a single plume
as wind moves the fire forward. ¢ Wildfire plume model including residual smoldering behind the
flaming front. d “Complete” wildfire plume model; multiple flaming head regions produce multiple
updraft cores; smoldering combustion behind the front produces smoke, part of which is entrained
into the updraft cores, part of which remains separate and near the ground

However, wildland fire practitioners and scientists have long recognized the need
for a conceptual and mathematical model that better reflects the geometry and envi-
ronment typical of a wildland fire in a complex atmosphere. The most basic wildfire-
specific conceptual model with one primary updraft is shown in Fig. 4.1b, with a
curved flaming front that is more vigorous at the downwind head than on the flanks. At
present, there are no mathematical models comparable to Briggs (1982) that incorpo-
rate the specific features—variable heating and noncircular shape—that differentiate
Fig. 4.1b from Fig. 4.1a.

This fire-specific model is still too simplistic, and the scientific and opera-
tional questions regarding plume dynamics require a more complex and physically
complete model. Specifically, in a real fire, flaming and smoldering combustion often
occur simultaneously and near one another. The area behind the flaming front often
continues to smolder after the front passes (Fig. 4.1c), producing smoke that may be
entrained into the rising plume, or remain near ground level and disperse more or
less independently.

In most wildfires, and in some large prescribed fires, the geometry of the flaming
front may result in multiple flaming fronts, each producing a distinct plume updraft,
or core (Fig. 4.1d). Different cores may rise to different heights and distribute smoke
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into different, possibly overlapping, layers of the atmosphere. This requires a more
complex model, accounting for varying scales of eddies and turbulence, effects
of vegetation and fuel structure on fire and smoke, sloping terrain, and varying
atmospheric stability.

In addition to being transported, the constituent gases and particulates in a fire
plume undergo a number of chemical reactions, but these are not generally considered
part of plume dynamics. Rather, they are commonly described as plume chemistry.
One exception to this is the role of moisture, which is usually present in sufficient
quantity, and with sufficient latent heat, to affect smoke rise and generate clouds.
Although it constitutes a small part of the total mass, the presence of this moisture
can modify the distribution of smoke and influence smoke chemistry (Chap. 6). Plume
moisture depends on environmental conditions—both atmospheric and vegetative—
which vary as a function of location, season, and time of day. A representative range
can be 1 g kg™! to 15 g kg~'of dry air. This chapter does not consider chemistry
other than moist thermodynamics, which relies on the presence of moisture in the
plume (see Chap. 6).

4.2.1.2 Physical Processes

The major physical processes of smoke plume dynamics are shown in Fig. 4.2.
Major properties include fire size, fire emissions, ambient atmospheric stratifi-
cation, turbulent mixing, wind shear, and latent heat released from the conden-
sation of water (Paugam et al. 2016). After being emitted, smoke particles and
gases move through the vegetation canopy, the planetary boundary layer, and some-
times into the free atmosphere. The concentrations and three-dimensional dynam-
ical spatial structure and temporal evolution of smoke plumes are determined by the
processes of: eddies, turbulence, smoke—canopy interactions, plume rise, dispersion,
transport, multiple updrafts, pyro-convection, entrainment of the ambient air, and
smoke-induced radiative and cloud disturbances.

4.2.2 Smoke Measurements

4.2.2.1 Smoke Structure and Atmospheric Disturbances

Limited observations of the fire environment during various experimental fires,
prescribed fires, and wildfires (Heilman et al. 2014; Clements and Seto 2015;
Clements et al. 2019) have focused mostly on fire spread, fire behavior, and other
aspects of the fire environment. Recent field studies have focused on fire—atmo-
sphere interactions in grasslands (Clements and Seto 2015; Clements et al. 2019),
and forested environments (Heilman et al. 2014; Seto et al. 2014; Clements and Seto
2015), with a small emphasis on ignition and combustion and a large emphasis on
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Fig. 4.2 Schematic illustration of smoke processes and relations, including components presented
in other chapters of this book

near-surface atmospheric feedbacks. Clements et al. (2019) have summarized recent
field campaigns to study fire spread and fire—atmosphere interactions.

The Rapid Deployments to Wildfires Experiment (RaDFIRE) (Clements et al.
2018) sampled 22 wildfire plumes using a mobile atmospheric profiling system
(Clements and Oliphant 2014) equipped with a scanning Doppler Lidar. This
campaign included observations of plume and wildfire phenomena including rotating
convective plumes, plume interactions with stable layers, multilayered smoke
detrainment, plume entrainment processes, pyro-cumulus and pyrocumulonimbus,
and smoke-induced density currents formed by smoke-shading (Lareau and Clements
2015, 2016, 2017). The mobile Doppler Lidar systems were especially valuable
because of their high resolution and ease of mobility. Figure 4.3 shows a series of
Lidar images with detailed, coherent plume structures from the Lidar observations
(Lareau and Clements 2017) taken during the El Portal fire near Yosemite National
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Fig. 4.3 Doppler Lidar range-height indicator scans showing plume rise, smoke backscatter (a—
d), and radial velocity (f-i). Reddish shading indicates flow away from the Lidar, bluish shading
indicates flow toward the Lidar; time is Pacific Daylight Time. Ambient wind is from right to left
in the panels. From Lareau and Clements (2017) © American Meteorological Society, used with
permission

Park (California) on July 28, 2014. Strong updraft cores and subsequent detrainment
downwind of the upper plume are evident in the radial velocities (Fig. 4.3f—i). Near-
surface indrafts of ~2—-3 ms~! extend approximately 1 km away from the column
base.

Disadvantages of Doppler Lidars are (1) attenuation in optically thick plumes
(Lareau and Clements 2016), (2) fairly slow scan speed (1-2°s~") to resolve plume
structures when compared to radars (>10° s~!), and (3) lack of polarization in the
Lidar beam. Dual-polarized (or Dual pol) Doppler radars transmit and receive both
horizontally and vertically orientated beams, providing measurements of the size
and shape of particles (pyrometeors [large debris lofted above wildfires that are
composed of the by-products of combustion of the fuels], ash, and debris) within
the plume. McCarthy et al. (2018) demonstrated the use of mobile X-band dual-
polarized Doppler radar for studying wildfire plumes. They sampled bushfire plumes
in Australia, with correlation coefficients <0.5 between radar beams within smoke
plume in horizontal and vertical directions, which is similar to what other studies
have measured (Melnikov et al. 2009; Lang et al. 2014; Lareau and Clements 2016).
This range makes it easy to distinguish between the smoke plume and hydrometeors,
because correlation coefficients of rain are mostly greater than 0.6.

Extreme wildfire updrafts were measured during the 2016 Pioneer Fire in Idaho
using an instrumented aircraft and airborne Doppler cloud radar (Rodriguez et al.
2020). Updraft velocities of 58 m s~! were observed deep within the plume at altitudes
of 2 km and 3 km above ground level. This updraft core was flanked on its edges
with downdrafts of 30 m s~!. The observed updrafts were below the cloud base and a
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developing pyrocumulonimbus, indicating that the primary mechanism for the strong
updrafts was sensible heat flux associated with the fire front.

4.2.2.2 Plume Rise

A number of techniques have been used to determine the height of smoke plumes,
including Lidar/radar detection, imaging, airborne observations, and plume sampling
(Urbanski et al. 2010; Heilman et al. 2014). The smoke plume heights for 20
prescribed fires were measured using a ground-based ceilometer in the southeastern
USA (Liu et al. 2012); the results indicated that the average smoke plume height was
approximately 1 km, with plume heights trending upward from winter to summer.
Lidar instruments aboard satellites have been used to detect smoke plume height
(e.g., Kahn et al. 2008; Raffuse et al. 2012), including the Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) satellite (Winker et al. 2007), and
the Multi-angle Imaging SpectroRadiometer (MISR) aboard the National Aeronau-
tics and Space Administration (NASA) TERRA satellite (Kahn et al. 2008). These
satellite detections found different plume heights (from tropical to boreal fires) and
different percentage of plumes that penetrate into the free atmosphere, where smoke
particles can be transported long distances downwind. The mean heights of plumes
from wildfires in the western and central USA were approximately 2 km and 3 km,
respectively (Raffuse et al. 2012).

Several long-term plume-rise datasets have been compiled based on satellite detec-
tions for evaluating plume-rise modeling and fire—climate interactions. A five-year
plume height climatology derived from MISR observations (Val Martin et al. 2010)
was used to evaluate the performance of the dynamical smoke plume-rise model
(Freitas et al. 2007). The model simulations generally underestimated the plume-
height dynamic range observed by MISR and did not reliably identify plumes injected
into the free troposphere. CALIPSO data combined with a trajectory model and the
National Oceanic and Atmospheric Administration (NOAA) hazard mapping system
generated daily plume-injection height (Soja et al. 2012). Hourly injection profiles
of plumes were developed from all fires recorded globally for more than a decade,
using a methodology that considers wildfire plumes similar to Convective Available
Potential Energy computations (Sofiev et al. 2012, 2013). An observation-based
global hourly fire plume-rise dataset for 2002—2012 used a modified 1D plume-rise
model based on observed fire size and fire radiative power data as a function of plant
functional type for different regions of the world (Wang et al. 2020). The dataset is
especially valuable for fire—climate interaction modeling.

4.2.2.3 Plumes from Prescribed Fires

Prescribed fires are used for ecological restoration, fuel treatment, and habitat
management in a variety of ecosystems (Chaps. 2, 8). Because prescribed fires and
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wildfires typically have different intensities, plume dynamics and environmental
impacts of the emissions differ between the two fire types (Williamson et al. 2016).
Although it is expected that health impacts from prescribed fire emissions will be
less, smoke from prescribed burning can linger for relatively long periods of time,
degrade local air quality, and pose a human health risk, due in part to the nature of
plume dynamics.

Prescribed fires provide opportunities for safely measuring fire—fuel-atmosphere
interactions within and near the fire environment that can help improve our under-
standing of how fuels, topography, forest canopies, and ambient and fire-induced
atmospheric conditions affect fire and local smoke plume behavior. Recent prescribed
fire experiments that assessed plume dynamics include:

e The Prescribed Fire Combustion and Atmospheric Dynamics Research Experi-
ment (RXCADRE) conducted in Florida (Clements et al. 2016; Ottmar et al. 2016;
Peterson and Hardy 2016).

e Sub-canopy fire experiments in New Jersey and North Carolina (Heilman et al.
2013, 2015; Strand et al. 2013; Seto et al. 2014).

e The FireFlux grassfire experiments conducted over flat terrain in Texas (Clements
2010; Clements et al. 2019).

e Grassfire experiments in complex California terrain (Seto and Clements 2011;
Charland and Clements 2013; Clements and Seto 2015).

e Numerous low-intensity fire experiments focused on plume heights, superfog
formation, and validation of smoke dispersion models in Florida, Georgia, and
Alabama (Achtemeier 2005, 2009; Liu et al. 2009; Achtemeier et al. 2011).

These studies found that even low-intensity prescribed fires can modify ambient
atmospheric flow near the fires due to buoyancy at the fire front. Atmospheric turbu-
lence can be maximized just above the canopy and is typically anisotropic, with
horizontal turbulent mixing of smoke plumes exceeding vertical mixing. Maximum
plume updraft speeds during low-intensity sub-canopy fires typically occur near the
canopy top, although downdrafts can also occur in a sub-canopy fire environment.
Entrainment of cooler ambient air often occurs on the back side of advancing fire
fronts and their associated plumes.

Fire-induced surface-pressure perturbations at fire fronts can increase wind
velocity at the base of plumes (Clements and Seto 2015; Clements et al. 2019). Smoke
transport and dispersion during low-intensity fires in complex terrain at night are
governed by large-scale atmospheric synoptic forcing and buoyancy-related drainage
flows. The mixing of warm and moist smoke plumes generated by low-intensity fires
with cool and moist ambient nighttime air can generate superfog plumes (a combi-
nation of smoke and water vapor that produces zero visibility over roadways; see
below and Chap. 3) that are carried downwind of the fire.
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4.2.2.4 Field Campaigns

In recent years, several comprehensive field campaigns that combined Lidar, radar,
weather towers, aircraft, drones, and satellites to measure smoke plumes over
burn sites and downwind from wildfires and prescribed burns have been imple-
mented. These projects include (1) the Fire and Smoke Model Evaluation Exper-
iment (FASMEE) (Prichard et al. 2019), (2) Fire Influence on Regional to Global
Environments and Air Quality (FIREX-AQ), and (3) Western Wildfire Experiment
for Cloud Chemistry, Aerosol Absorption and Nitrogen (WE-CAN). These projects
have investigated physical, chemical, and optical properties of smoke plumes and
the associated influences of fuels, fire behavior, fire energy, and meteorology on
dynamics of near-source plumes and long-range smoke transport.

4.2.3 Smoke Plume Modeling

4.2.3.1 Plume Rise

It is important to obtain dynamic properties at the fire—atmosphere interface (e.g.,
heat fluxes, exit temperature, velocity) and evaluate their effects on plume rise in
order to understand and develop schemes to predict the effects of complex plume
structures (e.g., multiple updrafts) on plume rise. Both empirical and physics-based
models are available for calculating plume rise (Liu et al., 2010; Paugam et al. 2016).

Empirical models are based on field and laboratory measurements using statistical
methods or similarity theory, with algebraic expressions that require no time or space
integration. The Briggs scheme originally developed for stack plumes (Briggs 1982)
was adapted for fire plumes by including fire heat release (Pouliot et al. 2005) but
has been shown to have systemic biases compared with satellite data (Raffuse et al.
2009). It has been used in the Community Multiscale Air Quality (CMAQ) (Byun
and Schere 2006) regional air quality model (Baker et al. 2018). A fire plume-rise
height parameterization was developed using observation-based plume-rise data for
a 10-year period for 15 global wildfire regions (Wang et al. 2020), including nearly
30 parameters, mostly from climate models. Regression models have been used to
calculate plume rise of prescribed fires based on measured plume-rise data in the
southeastern USA (Liu 2014).

Physics-based models consist of differential equations governing fluxes of mass,
momentum, and energy, with solutions found through time and/or space integration.
Among the first dynamical models are (1) a one-dimensional model based on the
dynamic entrainment plume model that simulates the time evolution of plume rise
and determines the final injection layer (Freitas et al. 2007), (2) a parameterization
based on an eddy diffusivity/mass flux scheme for modeling shallow convection and
dry convection (Rio et al. 2010), and (3) a vertical static model using a concept similar
to Convective Available Potential Energy computations (Sofiev et al. 2012, 2013).
An atmospheric modeling framework with different plume-rise parameterizations
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for a well-constrained prescribed burn found that model results were significantly
improved when fire emissions were distributed below the plume top following a
Gaussian distribution (Mallia et al. 2018). Daysmoke, a hybrid of the empirical and
dynamic smoke models, simulates smoke particle movements using statistical and
stochastic relations.

4.2.3.2 Dispersion and Transport

Modeling tools of varying complexity are available for simulating and predicting
transport and dispersion of smoke from wildland fires (Goodrick et al. 2013),
including:

¢ Box models such as the Ventilation Index and the Atmospheric Dispersion Index.

e Gaussian plume models such as VSMOKE and the Simple Approach Smoke
Estimation Model (SASEM).

e Lagrangian puff or particle models such as CALPUFF (Scire et al. 2000),
the Hybrid Single-Particle Lagrangian Integrated Trajectory (HY SPLIT) model
(Stein et al. 2015), FLEXPART (Brioude et al. 2013), Daysmoke (Achtemeier
et al. 2011), and Planned Burn-Piedmont (PB-P) (Achtemeier 2005).

e FEulerian grid models such as CMAQ, AERO-RAMS (Wang et al. 2006), and the
chemistry version of the Weather Research and Forecasting model (WRF-Chem)
(Grell et al. 2005).

Many of the Lagrangian puff/particle and Eulerian grid models rely on observed
or model-predicted atmospheric variables (e.g., wind fields, temperatures, mois-
ture, turbulence) at different spatial and temporal resolutions to generate predictions
of smoke transport and dispersion. For example, CMAQ, the Advanced Regional
Prediction System (ARPS) (Xue et al. 2000, 2001), and its canopy sub-model
variant (ARPS-Canopy) (Kiefer et al. 2013) have been coupled to the FLEXPART
particle dispersion model to allow for mesoscale, boundary-layer, and canopy-scale
simulations/predictions of smoke transport and dispersion (Charney et al. 2019).

The WRF model and its atmospheric chemistry (WRF-Chem), large-eddy-
simulation (WRF-LES) (Mirocha et al. 2010) and fire (WRF-Fire) variants (see also
Chap. 3) have been used to investigate:

e Plume transport and dispersion-related issues, such as the effects of plume
dynamics on fire weather (Grell et al. 2011).

e Vertical and horizontal plume transport during boreal wildfires (Thomas et al.
2017).

e The impact of smoke plumes transported from California, Oregon, and Wash-
ington on elevated ozone and PM, s in other locations in the western USA (Miller
et al. 2019).

e The effects of vortices on plume dispersion and plume rise (Cunningham and
Goodrick 2012).
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The WRF model has also been coupled with CMAQ to provide smoke transport
and dispersion assessments of fire events (e.g., Zou et al. 2019a). Before being
superseded by the WRF model in 2010, the 5th Generation Penn State/National
Center for Atmospheric Research Mesoscale Model (MM5) was used extensively
with CMAQ (e.g., Liu et al. 2009), CALPUFF (e.g., Jain et al. 2007; Larkin et al.
2009), and Daysmoke (e.g., Liu et al. 2010) to conduct smoke transport and dispersion
assessments in the USA (Fig. 4.4).

4.2.3.3 Nighttime Smoke

Plume dynamics can differ greatly between nighttime and daytime. At night, fire
combustion shifts toward smoldering and low-intensity flaming. Decreasing surface
temperatures favor the development of a nocturnal surface inversion, a stable layer in
the atmosphere that suppresses convective motion. The combination of less buoyant
smoke and suppressed convection leads to smoke being trapped near the surface,
resulting in degraded air quality and visibility. Simulations with PB-P (Achtemeier
2005) indicate that dispersion of the nonbuoyant nocturnal smoke is largely driven
by drainage flows. As the land surface cools and forms a shallow layer of adjacent
cool air, small pressure gradients develop, forcing the cooled air downslope. The cool
air accumulates in valleys and either pools there or continues flowing down-valley,
depending on the slope of the valley floor.

The risk associated with accidents due to impaired visibility at night is ampli-
fied under certain conditions. Under a nocturnal inversion, smoldering combustion
releases water vapor and particulates that act as cloud condensation nuclei (Engel-
hart et al. 2012) into the atmosphere. This warm, moist, smoky air mixes with cooler
ambient air to form a saturated or potentially supersaturated air mass often referred
to as superfog (Achtemeier 2006). The combination of saturated to supersaturated
conditions, with an abundance of cloud condensation nuclei particles, creates an
air mass dominated by very small droplets that scatter light and can greatly reduce
visibility.

A simple two-part model based on radiational cooling of the smoke air mass to its
dewpoint temperature, and nongradient mixing of the smoke and ambient air masses,
was developed to simulate superfog formation (Achtemeier 2008). The simulation
showed that the liquid water content of the smoke—fog mixtures was much higher
than for natural fog and smoke, and for fog flowing northward along drainages from
a prescribed burn 3.2 km to the south of a highway. Bartolome et al. (2019) coupled a
thermodynamic model similar to that of Achtemeier (2008) with a two-dimensional
boundary-layer model, which describes transport and turbulent mixing processes
that control the persistence of superfog as it disperses from a burned area. Boundary-
layer growth predictions from the model were verified with laboratory experiments,
describing superfog development for two events.

Drainage flows are driven by cooling of sloping terrain, and surface type and
moisture content affect cooling rates, influencing pollutant dispersion. Vegetation
and terrain heterogeneities alter atmospheric dispersion patterns that switch from
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Fig. 4.4 Fire hotspots and smoke over the Pacific Northwest region on September 5, 2017:
a satellite imagery and b WRF-CMAQ PM; 5 simulation (Zou et al. 2019a)
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non-Gaussian to near-Gaussian behavior as soil moisture increases (Wu et al. 2009).
Land-cover heterogeneity (e.g., a mosaic of dry areas and wet areas) can produce
complex patterns of differential heating that induce complex atmospheric circulations
at meso- and microscales. These circulation patterns are primarily responsible for
the development of non-Gaussian dispersion patterns. Soil and vegetation have the
biggest effect on atmospheric dispersion in the nocturnal boundary layer.

4.2.4 Interactive Processes

4.2.4.1 Terrain Interactions

The effects of terrain heterogeneity on atmospheric and smoke plume dynamics
have been examined extensively in both observational and numerical modeling
studies. These studies have shown that atmospheric boundary-layer, tropospheric
wind, temperature, and moisture fields are strongly influenced by surface-elevation
variations, land—water boundaries, and land-use/land-cover patterns. Terrain-induced
phenomena such as katabatic winds (i.e., drainage flows), anabatic winds, féhn and
chinook winds, terrain channeling of flows, land/sea breezes, and urban heat islands
affect how smoke from wildland fires is transported and dispersed (Liu et al. 2009;
Sharples 2009; Lu et al. 2012; Kiefer et al. 2019; Miller et al. 2019). Many of these
same phenomena can directly affect the spread of wildland fires across the landscape,
which in turn affects when and where fire emissions for subsequent transport and
dispersion occur (Clements 2011).

4.2.4.2 Canopy Interactions

The behavior of wildland fires in forested environments and the associated disper-
sion of smoke through forest vegetation depends on local ambient, fire-induced, and
canopy-induced meteorological conditions (Heilman et al. 2013; Strand et al. 2013;
Mueller et al. 2014). Forest vegetation acts as a drag on ambient and fire-induced
winds (Massman et al. 2017; Charney et al. 2019; Moon et al. 2019), and horizontal
and vertical wind shear patterns are a source of turbulence generation (Kiefer et al.
2015; Heilman et al. 2017). Vegetation can also influence the lower atmospheric
boundary-layer thermal environment, which determines the amount of turbulence
generated or dissipated through buoyancy (Kiefer et al. 2015; Charney et al. 2019).
Finally, vegetation can generate wake-generated turbulence and enhanced dissipation
of turbulence as canopy elements break down flow eddies to smaller sizes.
Observational and modeling studies that assess the potential effects of fire—
canopy—atmosphere interactions on smoke plume behavior conclude that:
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e Maximum increases in the energy of turbulent circulations as a result of fire
spread can occur near the top of forest canopies, thereby enhancing the dispersion
of smoke plumes (Heilman et al. 2015, 2019).

e Horizontal mixing of smoke plumes within forest vegetation layers due to turbu-
lent circulations is often stronger than vertical mixing, particularly near the
surface, both before and after the passage of fire fronts (Seto et al. 2013; Heilman
etal. 2015, 2019).

e Distribution of turbulent velocity near wildland fires is highly skewed, making
turbulence regimes in such environments non-Gaussian and calling into question
the application of smoke modeling tools that assume Gaussian turbulence for
diffusing smoke (Heilman et al. 2017).

e Dense forest canopies (high plant-area densities) can lead to more upright smoke
plumes above and in the vicinity of combustion zones, corresponding with larger
plume heights (Charney et al. 2019).

4.2.4.3 Integrated and Interactive Systems

Several integrated and interactive systems of fire behavior, smoke, and meteorology
are powerful tools for understanding the coupled processes linking smoke, fire, and
the atmosphere, as well as informing different aspects of smoke management decision
making. Although they operate on different scales and focus on different processes,
FIRETEC (Linn and Cunningham 2005), WFDS (Mell et al. 2007), CAWFE (Coen
2013), Meso-NH ForeFire (Filippi et al. 2009), WRF-SFIRE (Mandel et al. 2011),
and WRF-SFIRE-CHEM (e.g., Kochanski et al. 2015) are coupled models with the
potential to resolve plume dynamics associated with fire behavior.

Physics-based computational fluid dynamics (CFD) fire models such as FIRETEC
and WFDS have high spatial resolution (a few meters), requiring a large amount
of computational resources. As a consequence, their use in wildfire-scale prob-
lems exceeding approximately 40 ha is not feasible. In an effort to improve fire
and smoke modeling capabilities while maintaining modest computational cost and
input requirements, so-called hybrid models have been developed. Models such as
CAWEFE, Meso-NH ForeFire, and WRF-SFIRE couple a CFD-type weather model
with a simplified fire model to account for first-order fire—atmosphere interactions.
Such models calculate plume rise and dispersion but rely on parameterized fire
physics. As they treat smoke as a passive tracer, they can describe basic plume
dynamics, but cannot account for interactions between smoke, atmospheric radia-
tion, or chemistry. Efforts have been made toward developing integrated modeling
systems that can take into account fire progression, emissions, plume rise, dispersion,
and radiative and chemical impacts of smoke. For example, WRF-SFIRE-CHEM
couples the chemical transport model WRF-CHEM (Grell et al. 2011) with the fire
module SFIRE (Mandel et al. 2011).

In WRF-SFIRE-CHEM, a hybrid model that couples a CFD-type weather model
with an empirical rather than a dynamical fire model, fire progression and emissions
are driven by local meteorological and fuel conditions affected by fire itself, so the
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Fig. 4.5 WRF-SFIRE simulation of a prescribed burn at Fort Stewart, Georgia, on February 15,
2013. The color arrows represent wind speed (see right-hand color bar) and direction. The upper-
level plane shows local plume heights (see right-hand color bar). From Liu et al. (2019)

fire progression is simulated in-line with fire emissions and chemistry. WRF-SFIRE-
CHEM computes fire emissions and plume rise based on fire behavior, fuel moisture,
and atmospheric conditions computed at each WRF time step (Fig. 4.5). Combustion
rates are based on the mass of fuel consumed within each fire-grid point. Emission
fluxes are the products of combustion rates and fuel-specific emission factors. Smoke
emissions are represented as a sum of fluxes of chemical species and incorporated
into the lowest WRF model layer. Smoke emissions are transported and undergo
chemical transformations in the atmosphere according to modeled chemical mech-
anisms. Aerosol emissions are linked to the aerosol model (GOCART) and interact
with atmospheric radiation and microphysics. Initial wildfire simulations suggest
that WRF-SFIRE-CHEM can simulate elevated concentrations of NO, and PM, 5 of
fire emissions associated with wildland fires (Kochanski et al. 2015) (Fig. 4.5).

4.2.4.4 Smoke-Radiation Interactions

The opacity of smoke from large fires affects solar irradiance as well as within-plume
radiative transfer characterizations. Both gas and aerosol species contribute to this
opacity and vary dynamically within the fire plume due to ongoing chemistry and
aerosol physics after emission. Activation (or suppression) of clouds due to smoke
can further complicate the understanding of smoke transport (Feingold et al. 2005).
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Several sources of information are used to evaluate links between smoke properties
and plume dynamics, including: (1) episodic collection of in situ gas and aerosol
concentrations and the aerosol optical properties of smoke in different atmospheric
regimes (e.g., Forrister et al. 2015; Liu et al. 2016; Selimovic et al. 2017; Ditas et al.
2018), (2) remote sensing of properties of large-scale burning pollution from satellite
instrumentation, and (3) ground-based sun photometer and Lidar networks (e.g.,
Nikonovas et al. 2017). This information is incorporated into models via parametric
simplifications and/or prescribed aerosol optical properties.

Numerical experiments have examined the local effects of smoke in complex
terrain using an integrated framework coupled with the fire, atmosphere, and chem-
ical transport model WRF-SFIRE-CHEM (Kochanski et al. 2015). Mallia et al.
(2020) investigated smoke transport driven by small-scale topographical flows in
a local wildfire event in Utah and found good agreement between simulated and
observed spatial PM; 5 patterns, including realistic representation of the drainage
flow advecting smoke into a valley.

Simulations of the 2015 California fires that included the radiative impact of smoke
successfully resolved local reductions in incoming solar radiation and surface temper-
atures associated with smoke shading. Additional sensitivity experiments demon-
strated a positive feedback associated with radiative smoke effects: smoke cools the
surface, stabilizes the atmosphere, and enhances local inversions, as well as reducing
the planetary boundary-layer height and near-surface winds, leading to reduced venti-
lation and smoke accumulation. This radiatively driven mechanism results in posi-
tive feedback, manifesting a nonlinear increase in surface PM; 5 concentrations as a
function of increasing emissions (Kochanski et al. 2019).

4.2.4.5 Smoke-Fire Interactions

Plume dynamics are directly linked to fire behavior because fire-emitted heat and
moisture fluxes control the development of the buoyant smoke column. Conversely,
the lack of fire-emitted heat results in surface-smoke accumulation and limited dilu-
tion, as often observed during fires in the Southeast. As a consequence, changes
in fireline intensity affect plume buoyancy and evolution of the smoke column.
However, fire behavior is linked to atmospheric conditions via coupling at various
timescales. At scales of seconds to minutes, the most important atmospheric driver is
wind, which drives fire propagation and controls the tilt and dispersion of the smoke
column.

Fire also modifies local weather conditions. Pyroconvective plumes generate
indrafts into the base of rising smoke columns, accelerating winds in the vicinity
of the fire front. Observational data (Heilman et al. 2015; Clements et al. 2019)
and numerical experiments (Kochanski et al. 2013a; Kiefer et al. 2014) have shown
that fire-affected winds may be over two times stronger than ambient winds. These
perturbations in near-surface winds that control heat release also depend on atmo-
spheric stability and vertical wind shear (Kochanski et al. 2013b). Just as fire behavior
is controlled by two-way coupling between fire and the atmosphere, so is plume
dynamics.
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4.2.5 Smoke Decision Support Systems

Decision support systems for smoke management consist of one or more computer-
based applications that assist managers in planning for and implementing prescribed
fires and can predict potential downwind impacts from wildfires. For example,
a user interface developed for personal computers (https://webcam.srs.fs.fed.us/
tools/vsmoke) allows the VSMOKE atmospheric dispersion model to estimate the
maximum hourly PM; s and carbon monoxide, along with corresponding heat release
rate (Anderson et al. 2004). A web-based version called VSMOKE-GIS displays a
Google Map and results using the air quality index (see http://weather.gfc.state.ga.
us/GoogleVsmoke/vsmoke-Good2.html).

The HYSPLIT trajectory model estimates downwind air quality impacts, facili-
tating an assessment of whether to implement a prescribed fire within ~2 days. Smoke
management personnel typically use one of two decision support systems that utilize
HYSPLIT. The first version uses the same user interface as VSMOKE, but the user
interface also formats the Fire Emission Production Simulator (FEPS) (Anderson
et al. 2004) hourly PM; 5 emission and plume rise estimates to produce the input
files needed by PC HYSPLIT. The second version using HYSPLIT is the BlueSky
Playground modeling framework (Larkin et al. 2009), which is used in the Montana—
Idaho Airshed Coordinating Group’s decision support system. On the Internet, a user
completes the inputs and runs the Fuels and Fire Tools (which includes FEPS) to esti-
mate PM; 5 emission and plume rise, prior to running HYSPLIT. Both the BlueSky
framework and the PC HYSPLIT version produce outputs that are viewed in Google
Earth. BlueSky displays estimated PM, 5 concentrations, whereas PC HYSPLIT
displays hourly results using an air quality index.

Resource managers use VSMOKE and HYSPLIT to assess potential smoke
impacts during the daytime. PB-P, a web-based application (https://piedmont.
dri.edu), is used to evaluate the flow of nighttime smoke and whether fog may form
but requires field evaluations to earn confidence in its predictions. Users are encour-
aged to support decisions by obtaining spot weather forecasts within 5 km of the
burn for certain weather and dispersion conditions (Long et al. 2014). If PB-P results
and/or most of the conditions indicate potential for fog formation on roadways, then
mitigation measures can be implemented.

Aside from the models outlined above, significant effort has been made toward
operational implementation of hybrid fire—atmosphere models for integrated fire
spread and smoke forecasting. Recent implementations of such models (Jimenez
et al. 2018; Giannaros et al. 2020) have a potential to improve operational smoke
forecasting by linking fire and smoke modeling. This type of system can simplify
using coupled models for smoke forecasting by utilizing simple web portals for easy
model initialization and online presentation of model results (Mandel et al. 2019).
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4.3 Gaps in Understanding Plume Dynamics

4.3.1 Measurements

Although there have been various observations of plume structures during prescribed
fires (Liuetal. 2012; Clements and Seto 2015; Clements et al. 2019), few observations
exist for deep plumes from large wildfires. An exception is the Rapid Deployments
to Wildfires Experiment (4.2.2.1; Clements et al. 2018), which sampled 22 wildfire
plumes using a mobile Doppler Lidar (Clements and Oliphant 2014). Although this
study sampled different wildfires, it was limited by a lack of real-time fire behavior
observations.

There is an operational and research need for coincident measurement of fire,
smoke, and atmospheric structures to better understand fire—atmosphere interactions
and plume dynamics. To date, no datasets link airborne infrared imagery of fire-front
properties (e.g., flame intensity and length, front spread rate, heat release) to vertical
velocities, so our understanding of plume structures and what happens on the ground
is limited. Direct measurements of vertical velocities in deep wildfire plumes, which
are needed to better constrain modeled smoke injection heights and dispersion, are
limited to one study (Clements et al. 2018).

Our understanding of deep wildfire plumes is also affected by having few observa-
tions of the microphysical properties of plume particles. These observations require
in situ airborne sampling and/or remote sensing measurements, using dual-polarized
Doppler radars. McCarthy et al. (2018) documented the dual-polarized features asso-
ciated with bushfires in Australia, showing that the correlation coefficient is a poten-
tial indicator for ash and debris detection. Observational studies are needed using
multi-wavelength radars to better understand the size and distribution of pyrom-
eteors (large debris lofted above wildfires that are composed of the by-products
of combustion of the fuels) in wildfire plumes. Furthermore, to better understand
plume dynamics and their effects on fire behavior, a coordinated meteorological field
program utilizing ground-based and airborne remote sensing and in situ sampling
technologies targeting large, active wildfires is needed.

4.3.2 Plume Rise

Modeling of smoke plume rise has been evaluated primarily with multiple-
angle satellite products. Although many tools have been developed for plume-rise
modeling, less attention has been paid to modeling of vertical concentration profiles.
Smoke profiles are generally specified, rather than resolved, based on fire dynamics
and local weather conditions.

Smoke measurements have indicated the existence of multiple, simultaneous
updrafts within a smoke plume. Multiple-core updrafts have smaller updraft veloc-
ities and diameters and are more affected by entrainment than single-core updrafts,
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so they are less efficient in vertical smoke movement (Achtemeier et al. 2012). The
number of updraft cores is a critical factor for describing plume rise (Liu et al. 2010).
Some models have developed parameterization to include multiple core numbers in
heat flux calculations or explicitly simulate multiple plumes. However, additional
progress is needed in: (1) quantifying updraft; (2) understanding contributing factors
forignition patterns, vegetation structure, fire spread, and atmospheric processes; and
(3) understanding the evolution of updrafts in the atmosphere (including mergence).

4.3.3 Dispersion and Transport Modeling

Although the fundamental science governing atmospheric transport and dispersion
is fairly well-established in most smoke models, the evolution of strongly buoyant
smoke plumes is poorly described (Goodrick et al. 2013). Therefore, simpler approx-
imation schemes on coarser scales (e.g., WFDS-Level Set and WRF-SFIRE) are used
(Ottmar et al. 2017). This is due in part to a lack of computational capacity, especially
for operational purposes, but measurements are also lacking for key inputs of fuels,
fire, and meteorology to support plume model development.

The successful evaluation and validation of modeling tools depend on availability
of observational data across a wide range of spatial and temporal scales. Closing the
gaps in our understanding of plume dynamics, transport, and dispersion is contingent
on establishing new observational datasets upon which models can be evaluated and
model output can be verified. Without ample observational data collected during
actual wildland fire events or in controlled laboratory environments, the uncertainty
and errors in model simulations of plume dynamics, transport, and dispersion are
difficult to quantify.

4.3.4 Nighttime Smoke

Vertical and horizontal resolution is the primary challenge for modeling night-
time smoke drainage and potential superfog conditions. As large-scale forcing from
synoptic weather systems weakens, details of the local environment are increasingly
important. Tools such as PB-P account for the influence of local topography by
using digital elevation models to resolve topographic variations at a horizontal grid
size of 30 m. Although greater topographic resolution is needed to simulate drainage
flows, a less obvious need includes land-cover types and surface-moisture conditions
(micrometeorology).
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4.3.5 Physics-Based Fire Models

As stated in Sect. 4.2.4.3, physics-based CFD fire models such as FIRETEC and
WEFDS can resolve the complexities of coupling fire dynamics with atmospheric
dynamics; however, their computational costs and input data requirements make oper-
ational applications infeasible. Because these models focus on small-scale processes
important from the combustion standpoint, they lack capabilities in terms of aerosol
physics, microphysics, and chemistry which become important at the larger scales
typical for wildland fires.

4.3.6 Smoke Management for Prescribed Fires

Managing smoke from prescribed fires requires technical specialists to work with
fire managers to predict and effectively communicate likely smoke effects (Chaps. 7,
8). Occasionally, when a prescribed fire is conducted using mass ignition and no
local smoke impacts are predicted or reported, the burn manager will be surprised to
receive complaints of smoke from a location far downwind of the burn unit. Without
implementing smoke prediction, it is hard to know how high the plume will rise and
if fine particulates will travel a long distance from the fire. To effectively implement
smoke prediction, we need to understand the strengths and weaknesses of smoke
models, which are listed in NWCG (2020). In addition, managers need to be able
to estimate multiple emissions and plume rise from co-occurring fires which will
require input from both empirical data and model output.

4.4 Vision for Improving Plume Dynamics Science

Both conceptual understanding and practical ability to accurately model wildland fire
plumes are poised to make significant advancements. Improvements will be driven by
a combination of increasing computing power, new observational techniques, new
integrated observational campaigns, and greater recognition of the need for such
improvements. We discuss these factors below and provide a vision for improving
smoke plume research as a component of a broader perspective for fire and smoke
science (Chaps. 2, 3, 5, 6, 7).
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4.4.1 New Research on Observational and Computational
Capabilities

Routine observations of plumes are currently limited to satellite observations of
plume tops, with the longest time series coming from the polar-orbiting MISR
(Diner et al. 1998) stereo imaging instrument. MISR is capable of imaging significant
portions of the globe once per day, but the overflight time may not be optimal in terms
of obtaining maximum plume height. The polar-orbiting CALIOP (Hunt et al. 2009)
satellite Lidar system provides a vertically distributed glimpse into smoke plumes that
fall directly under its orbital path. However, such observations are limited and often
do not intersect the plume directly over the fire, further limiting their usefulness. The
MISR twin satellite system and CALIOP Lidar capabilities are highly specialized
and serve as research technologies, with operational capability still unavailable.

A new methodology (Lyapustin et al. 2019) for determining plume heights directly
from aerosol and gas products of the Moderate Resolution Imaging Spectrora-
diometer (MODIS) (Justice et al. 2002, 2010) has the potential to make plume-top
observations more routine. MODIS is based on two polar-orbiting satellites, and if
it is applicable to other platforms, it could lead to operational implementation. A
major advance in observing the development and evolution of plumes is possible if
this technology can be applied to the new geostationary GOES-16 and GOES-17
(Schmidt 2020) Advanced Baseline Imager (ABI) (Schmit et al. 2005, 2008, 2017)
imagery. Specifically, GOES-16 and GOES-17 provide imagery rapidly, and appli-
cation of such a system to these platforms may allow for observation of plume-top
development every 5 min throughout the day (perhaps every minute in some cases).
This type of near real-time series observation on a routine basis would provide more
than an order of magnitude additional observations of plume tops than are currently
available, providing insight on how the plume is changing over short time intervals.

NASA is launching new missions to increase the capacity to detect air pollu-
tants from different sources, including wildfires. The Multi-Angle Imager for
Aerosols (MAIA) mission (https://maia.jpl.nasa.gov) is focused on understanding
how different types of pollutants affect human health. The MAIA mission will study
12 specific locations in the world with dense population, available health records,
and available ground-based air monitor data. Two of the locations, Los Angeles and
Atlanta, are often affected by smoke, from wildfires and prescribed burns, respec-
tively. The multi-angle data are useful for determining smoke plume heights. MAIA
will pass over a specific location once a day in late morning. Another mission,
Tropospheric Emissions: Monitoring of Pollution (TEMPO) (http://tempo.si.edu),
will measure particles and gases in the troposphere (lowest layer of the atmosphere),
but at an hourly frequency.

Planning for FASMEE (Prichard et al. 2019) has identified a comprehensive set
of observations that could be obtained through large-scale planned burns (Liu et al.
2019). It may be possible to use multiple synchronized ground Lidar units with
their directional measurements intersecting at a fire; the intersection would provide
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a virtual vertical tower providing details on the movement of air and aerosols at the
center of the plume. This capability is planned for future FASMEE burns.

Some citizen-science efforts have contributed to knowledge about plume
dynamics, including a project in Canada that used trained volunteers with equipment
to measure plume heights. However, newer technology may make such data easier to
obtain and available in greater quantities. Cellphones can take photographs or video
with high resolution and record the geolocation of the phone, so it is conceivable that
an app would allow citizen scientists or agency personnel to quickly and accurately
collect numerous photos. This type of image database would provide the potential
to develop novel analytical techniques, using automated algorithms or distributed
human-powered image interpretation.

As advanced models of plumes require substantial computing power, current
coupled CFD-based models run too slowly for operational and decision support.
Cloud computing and improved computer processing may allow advanced models
to become practical for applications, either directly or in optimized variants. It is
also possible that the vertical distribution of emissions can be reduced to a number
of typical structures that could be derived from CFD modeling efforts, then related
back to simpler quantities for faster application. Combinations of atmospheric profile,
fuelbed type and conditions (e.g., moisture), fire size, fire shape, and regional topog-
raphy may control the type of vertical allotment sufficiently that the cached results
may be used within a smoke forecasting system, without the need to perform a new
run of the full CFD model.

4.4.2 New Approaches and Tools

Any effort to substantially improve our understanding of fire plumes needs to be
multidisciplinary and integrated across modeling and field research. Incorporation of
modelers and preliminary model results into the planning of observational campaigns
that can help pinpoint areas where observations are most critical and ensure that
time and space scales and resolutions of the observations are in sync with model
analysis and development. The Department of Defense Strategic Environmental
Research and Development Program field campaigns exemplify how to apply this
approach for program-level direction and support. This includes forming an Inte-
grated Research Management Team to coordinate/facilitate research integration and
to act as an interface/liaison between the host unit and researchers.

A set of intensively observed fires and a more limited set of broadly obtained
observations are needed to inform our understanding of plume dynamics. This is
similar to how fuelbed maps have been developed, with intensively measured specific
plots combined with satellite observations to apply the plot observations across the
map (Chap. 2). However, applications are needed on a scale of at least an order of
magnitude more complex than what is used in creating fuelbed maps. Because spatial
variability of fuels affects smoke plumes, fuelbeds will need to include appropriate
spatial statistics (e.g., spacing between areas of higher or lower fuel density).
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4.4.3 New Projects

Flexibility by agencies, institutions, researchers, and resource managers can help
to facilitate timely advances. A good example is the initial planning stages of the
FASMEE project (Ottmar et al. 2017; Liu et al 2019; Prichard et al 2019), which has
incorporated modelers and observational lists from a wide range of research groups.
Coordination among the FASMEE effort (Joint Fire Science Program), the FIREX-
AQ aircraft campaign (NOAA, NASA), and the WE-CAN project (National Science
Foundation) has demonstrated interagency and funding collaboration. FASMEE has
provided ground-based observations in support of the FIREX-AQ Western wildfire
aircraft campaign, and FIREX-AQ conducted detailed airborne observations of a
prescribed burn in Florida.

The FIREX-AQ and WE-CAN experiments have produced observations that will
allow researchers to analyze and improve the representation of smoke chemistry for
the next several years (Chap. 6). FASMEE has produced an initial set of observa-
tions from two prescribed burns, with additional burns planned in coming years.
The FASMEE observations are just beginning, and there is ongoing discussion for
continued interagency collaboration on future burns.

New and developing efforts on the operational side have the potential to produce
more data for model development. Specifically, deployment of Air Resource Advi-
sors (ARAs) to wildfires under the Interagency Wildland Fire Air Quality Response
Program (IWFAQRP) (Chap. 8; Lahm and Larkin 2020) has the potential to
collect and aggregate operational fire information available to the assigned Inci-
dent Command Teams that can be used for retrospective studies. For instance, ARAs
may be able to collect photographs of plumes and record requisite metadata. Datasets
and tools developed for real-time distribution through the IWFAQRP are providing
particulate monitoring data from permanent in situ networks and temporary moni-
tors, including monitors deployed by ARAs that could be guided, in part, by the
needs of smoke and plume model evaluation.

4.4.4 Recent Policies and Integration with Smoke Impacts
Research

The National Cohesive Wildland Fire Management Strategy initiated in 2009 facili-
tates collaboration among stakeholders and across ecosystems in the USA to utilize
the best science to address socially relevant wildland fire issues. The strategy focuses
on resilient landscapes, fire-adapted communities, and safe and effective wildfire
response. Plume dynamics and the interface of the fire environment are critical
to all three goals. The USDA Shared Stewardship Strategy also provides impetus
for improved knowledge about plume dynamics, recognizing that partnerships with
states and private landowners are needed to address the problem of elevated fuels in
fire-prone landscapes.
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The plume dynamics portion of smoke science will contribute to the effectiveness
of these strategies as smoke increasingly affects a range of critical social values
(Chap. 7). Understanding the intersection of the physics of plume development with
subsequent dispersion is needed to accurately predict air pollution and human health
effects on the public and firefighters. Plume impacts and chemical constituents are
critical for understanding air pollution and human health impacts, but the influence
of complex chemistry and atmospheric conditions is also tied to visibility concerns.
Smoke can be a contributing factor in roadway accidents, and accurate predictions
of the location of smoke impacts are critical. With the recent increase in the use
of prescribed fire and area burned by wildfire, more smoke-related incidents are
expected, meaning that better information is needed on low-level plume movement,
fumigation, and subsidence.

Recent research is helping to improve understanding of plume dynamics and
must be integrated into operational tools that can be accessed and supported by
ARAs, meteorologists, air quality specialists, prescribed fire practitioners, public
health specialists, and policy makers. In addition to research needs, investment is
also needed for validation and operational testing that can lead to applications.

Authorization of the IWFAQRP and use of ARAs on wildfire incidents to predict
public health impacts of smoke are an example of how scientific information can
address policy issues. Since the 1980s, some states have recognized the need to
solve smoke issues and have implemented States Implementation Plans that address
smoke management and emission reduction. The Northwest Fire Summit of 2019
noted that potential deaths from wildfire smoke likely far exceed those directly caused
by the wildfire itself, but opportunities to study wildland fire smoke and operational
response have been rare. A better scientific understanding of the health impacts of
smoke is needed by practitioners engaged in managing smoke and air quality.

4.5 Emerging Issues and Challenges

4.5.1 Coupled Modeling Systems

There is an ongoing effort to develop high-resolution dynamical systems that can
account for interactions among atmospheric processes, fire behavior, fire emissions,
and smoke dynamics (Liu et al. 2019). Current fire—smoke—atmospheric models such
as WRF-SFIRE-CHEM use the Rothermel fire spread model. The next-generation
coupled model will use high-resolution dynamical fire models such as FIRETEC
(Chap. 3). Development of next-generation smoke research and forecasting systems
requires coordinated measurements across fuels, fire behavior and energy, smoke and
meteorology, emissions, and chemistry. More powerful computation capacity will be
needed to make the coupled systems practical for real-time, operational applications.
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4.5.2 Improving Modeling Tools with Field Campaign Data

Comprehensive field research campaigns including FASMEE, FIREX-AQ, and WE-
CAN for evaluation of smoke modeling tools will advance our understanding of the
complex fire—atmosphere system. They will also help evaluate how well specific
models perform under real-world applications, the level of model uncertainties, and
which sources of uncertainty can be improved. The outcomes are expected to (1)
improve scientific knowledge of the physically coupled fuels—fire—smoke—chemistry
system; (2) develop exportable methodologies for measuring fuels for fire spread,
fuel consumption, and fire emissions models; (3) develop insights on processes that
drive the spatial organization of fire energy and emissions; (4) improve existing
operational fire and smoke models; and (5) develop advanced models based on data
collected on fuels, fire, meteorology, smoke plumes, and smoke chemistry.

4.5.3 Real-Time Smoke Transport Modeling and Prediction

Over the past 20 years, smoke from large wildfires has affected metropolitan areas of
the western USA for extended periods and, in some cases, has been transported thou-
sands of kilometers across North America (Navarro et al. 2016). Accurate predictions
of smoke transport are needed to inform effective mitigation (e.g., reduce outdoor
activities, close highways, acquire respirators) (Chap. 7). Real-time prediction of
smoke transport is critical (O’Neill et al. 2019) and can be assisted by dynamical
coupled smoke modeling systems.

NOAA continues to improve its hazard mapping system with the latest fire and
smoke monitoring methods and satellite data (www.usfa.fema.gov/operations/infogr
ams/011421.html). The product provides near real-time maps, fire data statistics, and
datasets for monitoring wildfire and smoke positions. The NOAA High-Resolution
Rapid Refresh-Smoke (HRRR-Smoke) produces a new weather and smoke forecast
every hour.

4.5.4 Smoke from Duff Burning Under Drought Conditions

It is typically difficult to burn duff (the layer of decomposing organic materials lying
below the litter layer of freshly fallen twigs, needles, and leaves and immediately
above the mineral soil) because of high fuel moisture (Varner et al. 2009; Ottmar
2014). However, under persistent drought conditions, duff will burn readily. Most of
the deep duff layer was burned in the 2016 Rough Ridge fire in northern Georgia,
which contributed to unexpectedly high fire emissions that dispersed into metro
Atlanta (Zhao et al. 2019). Current tools likely underestimate duff in some regions.
Better quantification of the duff layer is needed for accurate prediction of emissions as
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well as for peat soils (Chap. 2), which have contributed to globally significant smoke
events in terms of public health, climate, and regional air quality (Watts 2013).

4.5.5 Smoke Plume Dynamics and Climate Change

Increasing drought associated with climate change will increase wildfire occurrence
and emissions, affecting smoke dynamics. Ford et al. (2018) simulated the impacts
of climate change on air quality, visibility, and premature deaths, concluding that
fire-related PM; s would increase in the middle and late twenty-first century. Altered
atmospheric thermal structure, winds, and precipitation as a result of climate change
could also affect smoke dynamics. For example, fuel moisture is projected to decrease
in most US regions (Liu 2017), leading to more heat release from fires. Warming
due to the greenhouse effect is larger on the ground than in the atmosphere, which
will reduce atmospheric stability (Tang et al. 2015). Changes in both heat release
and stability will allow smoke plumes to rise to higher elevations.

4.5.6 Smoke Dynamics in the Earth System

Fire, smoke, ecosystems, and climate are interactive components of the Earth system
(Bowman et al. 2009; Andela et al. 2017; Liu 2018). Smoke—climate interactions
have long been part of climate modeling, which has shown that the radiative effects
of some particles can affect: (1) Hadley circulation and precipitation in the tropics
(Allen et al. 2012; Tosca et al. 2015), (2) regional climate and weather patterns in the
middle latitudes (e.g., Grell et al. 2011), and (3) radiation—ice—temperature feedbacks
in the polar region (Keegan et al. 2014; Winiger et al. 2016). Earth system models
(Hurrell et al. 2013; Malavelle et al. 2019) include atmospheric models and dynamic
global vegetation models to simulate environmental conditions for wildfires and
atmospheric radiation and climatic effects of fire carbon and particle emissions and
calculate fire-induced disturbances in land-cover and land—air fluxes. Earth system
models have greater capacity for modeling interactions of wildland fires and smoke
particles (Lietal. 2013, 2014; Unger and Yue 2014; Zou et al. 2019b). Improvements
are needed to incorporate global fuel systems and provide dynamical fire emissions
for smoke modeling and interactions with atmospheric processes.

4.6 Conclusions

Large wildfires have increased in the USA, and smoke has degraded air quality and
visibility in large areas. Recent advances in smoke measurements, model devel-
opment, and operational decision support tools have increased our understanding
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of smoke dynamics and ability to provide information to resource managers. Field
campaigns focused on smoke—atmosphere interactions have revealed complex smoke
structures and processes, and smoke-induced atmospheric disturbances and satellite
imagery have been used to develop long-term global smoke plume height datasets.
Integrated and interactive coupled models of smoke, fire, atmosphere, and canopies
have been developed and applied to simulate smoke processes and mechanisms for
air quality assessment, fire management, and climate change studies.

The largest gaps in smoke dynamics science are (1) the lack of high-resolution,
dynamical fire, smoke, and atmospheric coupled systems; and (2) simultaneous
measurements of these components, especially for wildfires. The following improve-
ments are also needed:

Smoke modeling needs to simulate buoyant dominant smoke processes.
Integrated, multidisciplinary observational data across multiple temporal and
spatial scales are needed to evaluate simulations of dynamical smoke processes
and validate predictions.

e Improved methods are needed for modeling vertical plume distributions and
multiple updrafts.

¢ The impacts of topography and the canopy on nighttime smoke need to be better
described.

e Better predictions are needed for local smoke effects from prescribed fire.

Plume dynamics science is likely to improve through the development of new
directions and strategies. New research directions include (1) increasing observa-
tional and computational abilities, using integrative tools with varied observation
levels; (2) implementing field campaigns and operational management projects; and
(3) implementing fire and stewardship strategies that help transition smoke dynamics
science into operational tools for air quality and public health management.

4.7 Key Findings

e The focus of field experiments has changed recently from fire behavior to smoke—
atmosphere interactions. Measurement techniques such as mobile atmospheric
profiling systems equipped with scanning Doppler Lidar have revealed complex
smoke structure and processes and smoke-induced atmospheric disturbances.

e Multiple-year smoke plume height datasets with regional and global coverages
have been developed based on satellite multiple-angle detection and other tech-
niques. The datasets are valuable for modeling some impacts and fire—climate
interactions.

e A major advance in smoke modeling has been the development and application
of integrated and interactive coupled models of smoke, fire, atmosphere, and
canopy; smoke operational and decision support systems; and plume-rise models
for wildland fires.
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e Applications of these models have improved our understanding of smoke
processes and mechanisms, such as factors determining plume evolution, feed-
backs to ambient conditions, impacts of multiple updrafts on fire energy and plume
rise, and formation of superfog. Modeling tools also provide concentrations and
spatial and temporal distributions of emissions from wildland fire for air quality
assessment and fire management.

e Recent improvements in our understanding of smoke dynamics include develop-
ment of high-resolution dynamical coupled smoke research and forecast systems,
smoke model evaluation and improvement using data from field campaigns, real-
time smoke prediction, consideration of smoke from duff burning, and assess-
ments of future smoke dynamics with respect to changing climate and the Earth
system.

e Gaps in research on smoke plume dynamics can be specifically addressed through
enhanced measurements of wildfire smoke, model improvement of buoyant
dominant lines, model evolution using observational data across large spatial
and temporal scales, development of vertical plume distributions, description of
multiple updrafts, better description of how topography and canopy affect night
smoke, and improvements in smoke predictions for prescribed fire.

e Plume dynamics science will generally improve through new research on obser-
vational capabilities and computational ability, new approaches and tools of inte-
gration, varied levels of observations, new partnerships, and new field campaigns.
These will help transition smoke dynamics science into operational tools for air
quality and public health management.

Acknowledgements The authors thank the reviewers for their valuable and constructive comments
and suggestions; Tom Pierce, Talat Odman, and Bret Anderson for participating in discussions; and
Yvonne Shih for various forms of assistance.

References

Achtemeier GL (2005) Planned burn-piedmont. A local operational numerical meteorological model
for tracking smoke on the ground at night: model development and sensitivity tests. Int J Wildland
Fire 14:85-98

Achtemeier GL (2006) Measurements of moisture in smoldering smoke and implications for fog.
Int J Wildland Fire 15:517-525

Achtemeier GL (2008) Effects of moisture released during forest burning on fog formation and
implications for visibility. ] Appl Meteorol Climatol 47:1287-1296

Achtemeier GL (2009) On the formation and persistence of superfog in woodland smoke. Meteorol
Appl 16:215-225

Achtemeier GL, Goodrick SA, Liu YQ et al (2011) Modeling smoke plume-rise and dispersion
from southern United States prescribed burns with Daysmoke. Atmosphere 2:358-388

Achtemeier GL, Goodrick SA, Liu YQ (2012) Modeling multiple-core updraft plume rise for
an aerial ignition prescribed burn by coupling Daysmoke with a cellular automata fire model.
Atmosphere 3:352-376



4 Smoke Plume Dynamics 113

Allen RJ, Sherwood SC, Norris JR, Zender CS (2012) Recent northern hemisphere tropical
expansion primarily driven by black carbon and tropospheric ozone. Nature 485:350-354

Andela N, Morton DC, Giglio L et al (2017) A human-driven decline in global burned area. Science
30:1356-1362

Anderson GK, Sandberg DV, Norheim RA (2004) Fire emission production simulator (FEPS),
user’s guide (version 1.0). Seattle: U.S. forest service, pacific northwest research station. http://
www.fs.fed.us/pnw/fera/feps. 20 March 2020

Baars H, Ansmann A, Althausen D et al (2011) Further evidence for significant smoke transport
from Africa to Amazonia. Geophys Res Lett 38:1.20802

Baker K, Woody M, Valin L et al (2018) Photochemical model evaluation of 2013 California wildfire
air quality impacts using surface, aircraft, and satellite data. Sci Total Environ 637:1137-1149

Bartolome C, Princevac M, Weise DR et al (2019) Laboratory and numerical modeling of the
formation of superfog from wildland fires. Fire Saf J 106:94-104

Bauer SE, Menon S (2012) Aecrosol direct, indirect, semidirect, and surface albedo effects from
sector contributions based on the IPCC AR5 emissions for preindustrial and present-day
conditions. J Geophys Res: Atmos 117:1-15

Bowman D, Balch J, Artaxo P et al (2009) Fire in the earth system. Science 324:481-484

Brey SJ, Fischer EV (2016) Smoke in the city: how often and where does smoke impact summertime
ozone in the United States? Environ Sci Technol 50:1288-1294

Briggs GA (1982) Plume rise predictions. In: Haugen D (ed) Lectures on air pollution and
environmental impact analysis. American Meteorological Society, Boston, pp 59-111

Brioude J, Arnold D, Stohl A et al (2013) The Lagrangian particle dispersion model FLEXPART-
WREF version 3.1. Geosci Model Dev 6:1889-1904

Byun D, Schere KL (2006) Review of the governing equations, computational algorithms, and other
components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl
Mech Rev 59:51-77

Charland AM, Clements CB (2013) Kinematic structure of a wildland fire plume observed by
Doppler lidar. J Geophys Res: Atmos 118:1-13

Charney J1J, Kiefer MT, Zhong S et al (2019) Assessing forest canopy impacts on smoke
concentrations using a coupled numerical model. Atmosphere 10:273

Clements CB (2010) Thermodynamic structure of a grass fire plume. IntJ Wildland Fire 19:895-902

Clements CB (2011) Effects of complex terrain on extreme fire behavior. In: Synthesis of knowledge
of extreme fire behavior: vol I for fire managers. (General technical report PNW-GTR-854.
pp. 5-24). Portland: U.S. Forest Service, Pacific Northwest Research Station

Clements CB, Kochanski AK, Seto D et al (2019) The FireFlux II experiment: a model-guided
field experiment to improve understanding of fire-atmosphere interactions and fire spread. Int J
Wildland Fire 28:308-326

Clements CB, Lareau NP, Kingsmill DE et al (2018) The rapid deployments to wildfires experiment
(RaDFIRE): Observations from the fire zone. Bull Am Meteor Soc 99:2539-2559

Clements CB, Lareau NP, Seto D et al (2016) Fire weather conditions and fire—atmosphere inter-
actions observed during low-intensity prescribed fires -RxCADRE 2012. Int J Wildland Fire
25:90-101

Clements CB, Seto D (2015) Observations of fire—atmosphere interactions and near-surface heat
transport on a slope. Bound-Layer Meteorol 154:409-426

Clements CB, Oliphant AJ (2014) The California state university mobile atmospheric profiling
system: a facility for research and education in boundary layer meteorology. Bull Am Meteor
Soc 95:1713-1724

Coen JL (2013) Modeling wildland fires: a description of the coupled atmosphere-wildland fire envi-
ronment model (CAWFE) (Technical Note NCAR/TN-500+STR). Boulder: University corpora-
tion for atmospheric research. https://opensky.ucar.edu/islandora/object/technotes%3A511. 20
March 2020


http://www.fs.fed.us/pnw/fera/feps
https://opensky.ucar.edu/islandora/object/technotes%253A511

114 Y. Liu et al.

Cunningham P, Goodrick SL (2012) High-resolution numerical models for smoke transport in
plumes from wildland fires. In: Qu JJ, Sommers W, Yang R, Riebau A, Kafatos M (eds) Remote
sensing and modeling applications to wildland fires. Tsinghua University Press, Beijing, pp 74—88

Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United
States, 1984-2011. Geophys Res Lett 41:2928-2933

Diner DJ, Beckert JC, Reilly TH et al (1998) Multi-angle imaging spectro radiometer (MISR)
instrument description and experiment overview. IEEE Trans Geosci Remote Sens 36:1072-1087

Ditas J, Ma N, Zhang YX et al (2018) Strong impact of wildfires on the abundance and aging of
black carbon in the lowermost stratosphere. ProC National Acad Sci USA 115:E11596-E11603

Engelhart GJ, Hennigan CJ, Miracolo MA et al (2012) Cloud condensation nuclei activity of fresh
primary and aged biomass burning aerosol. Atmos Chem Phys 12:7285-7293

Evangeliou N, Balkanski Y, Hao WM et al (2016) Wildfires in northern Eurasia affect the budget
of black carbon in the Arctic—a 12-year retrospective synopsis (2002-2013). Atmos Chem Phys
16:7587-7604

Feingold G, Jiang H, Harrington JY (2005) On smoke suppression of clouds in Amazonia. Geophys
Res Lett 32:1-4

Filippi BJ, Bosseur F, Mari C et al (2009) Coupled atmosphere-wildland fire modelling. J Adv
Model Earth Syst 1:11

Ford B, Val Martin M, Zelasky SE et al (2018) Future fire impacts on smoke concentrations,
visibility, and health in the contiguous United States. GeoHealth 2:229-247

Forrister H, Liu JM, Scheuer E et al (2015) Evolution of brown carbon in wildfire plumes. Geophys
Res Lett 42:4623-4630

Freitas SR, Longo KM, Chatfield R et al (2007) Including the sub-grid scale plume rise of vegetation
fires in low resolution atmospheric transport models. Atmos Chem Phys 7:3385-3398

Giannaros TM, Lagouvardos K, Kotroni V (2020) Performance evaluation of an operational rapid
response fire spread forecasting system in the southeast Mediterranean (Greece). Atmosphere
11:1264

Goodrick SL, Achtemeier GL, Larkin NK et al (2013) Modelling smoke transport from wildland
fire: a review. Int J Wildland Fire 22:83-94

Grell GA, Peckham SE, Schmitz R et al (2005) Fully coupled “online” chemistry within the WRF
model. Atmos Environ 39:6957-6975

Grell G, Freitas SR, Stuefer M, Fast J (2011) Inclusion of biomass burning in WRF-Chem: Impact
of wildfires on weather forecasts. Atmos Chem Phys 11:5289-5303

Hao WM, Petkov A, Nordgren BL et al (2016) Daily black carbon emissions from fires in northern
Eurasia for 2002-2015. Geosci Model Dev 9:4461-4474

Heilman WE, Bian X, Clark KL et al (2017) Atmospheric turbulence observations in the vicinity
of surface fires in forested environments. J Appl Meteorol Climatol 56:3133-3150

Heilman WE, Clements CB, Seto D et al (2015) Observations of fire-induced turbulence regimes
during low-intensity wildland fires in forested environments: Implications for smoke dispersion.
Atmospheric Science Letters 16:453-460

Heilman WE, Clements CB, Zhong S et al (2019) Atmospheric turbulence. In: Manzello SL (ed)
Encyclopedia of wildfires and wildland-urban interface (WUI) fires. Springer, Cham, Switzerland,
pp 1-17

Heilman WE, Liu Y, Urbanski S et al (2014) Wildland fire emissions, carbon, and climate: Plume
rise, atmospheric transport and chemistry processes. For Ecol Manage 317:70-79

Heilman WE, Zhong S, Hom JL et al (2013) Development of modeling tools for predicting smoke
dispersion from low-intensity fires (Final report, Project 09-1-04-1a). Boise: Joint Fire Science
Program. http://www.firescience.gov/projects/09-1-04-1/project/09-1-04-1_final_report.pdf. 20
March 2020

Hunt WH, Winker DM, Vaughan MA et al (2009) CALIPSO lidar description and performance
assessment. J Atmos Oceanic Tech 26:1214-1228

Hurrell JW, Holland MM, Gent PR (2013) The community earth system model: a framework for
collaborative research. Bull Am Meteor Soc 94:1339-1360


http://www.firescience.gov/projects/09-1-04-1/project/09-1-04-1_final_report.pdf

4 Smoke Plume Dynamics 115

Jain R, Vaughan J, Heitkamp K et al (2007) Development of the clearsky smoke dispersion forecast
system for agricultural field burning in the Pacific Northwest. Atmos Environ 41:6745-6761

Jiménez PA, Muioz-Esparza D, Kosovi¢ BA (2018) High resolution coupled fire—atmosphere fore-
casting system to minimize the impacts of wildland fires: applications to the Chimney tops II
wildland event. Atmosphere 9:197

Jost HJ, Drdla K, Stohl A et al (2004) In-situ observations of mid-latitude forest fire plumes deep
in the stratosphere. Geophys Res Lett 31:L.11101

Justice CO, Giglio L, Korontzi S et al (2002) The MODIS fire products. Remote Sens Environ
83:244-262

Justice CO, Giglio L, Roy D et al (2010) MODIS-derived global fire products. In: Ramachandran
B, Justice CC, Abrams M (eds) Land remote sensing and \global environmental change. Remote
sensing and digital image processing, vol 11. New York: Springer, pp 661-679.

Kahn RA, Chen Y, Nelson DL et al (2008) Wildfire smoke injection heights: two perspectives from
space. Geophys Res Lett 35:1.04809

Keegan KM, Albert MR, McConnell JR, Baker I (2014) Climate change and forest fires synergis-
tically drive widespread melt events of the greenland ice sheet. Proc National Acad Sci, USA
111:7964-7967

Kiefer MT, Zhong S, Heilman WE et al (2013) Evaluation of an ARPS-based canopy flow modeling
system for use in future operational smoke prediction efforts. J Geophys Res: Atmos 118:6175-
6188

Kiefer MT, Heilman WE, Zhong S et al (2014) Multiscale simulation of a prescribed fire event in
the New Jersey Pine Barrens using ARPS-CANOPY. J Appl Meteorol Climatol 53:793-812

Kiefer MT, Heilman WE, Zhong S et al (2015) Mean and turbulent flow downstream of a low-
intensity fire: influence of canopy and background atmospheric conditions. J Appl Meteorol
Climatol 54:42-57

Kiefer MT, Charney JJ, Zhong S et al (2019) Evaluation of the ventilation index in complex terrain:
a dispersion modeling study. J Appl Meteorol Climatol 58:551-568

Kochanski AK, Jenkins MA, Mandel J et al (2013a) Evaluation of WREF-Sfire performance with
field observations from the fireflux experiment. Geosci Model Dev 6:1109-1126

Kochanski AK, Jenkins MA, Sun R et al (2013b) The importance of low-level environmental vertical
wind shear to wildfire propagation: proof of concept. J Geophys Res: Atmos 118:8238-8252

Kochanski AK, Jenkins MA, Yedinak K et al (2015) Toward an integrated system for fire, smoke
and air quality simulations. Int J Wildland Fire 25:534-546

Kochanski AK, Mallia DV, Fearon MG et al (2019) Modeling wildfire smoke feedback mechanisms
using a coupled fire—atmosphere model with a radiatively active aerosol scheme. J Geophys Res:
Atmos 124:9099-9116

Lahm P, Larkin N (2020) The interagency wildland fire air quality response program. EM Magazine
(June). Pittsburgh: Air & Waste Management Association

Lareau NP, Clements CB (2015) Cold smoke: smoke-induced density currents cause unexpected
smoke transport near large wildfires. Atmos Chem Phys Discuss 15:17945-17966

Lareau NP, Clements CB (2016) Environmental controls on pyrocumulus and pyrocumulonimbus
initiation and development. Atmos Chem Phys 16:4005-4022

Lareau NP, Clements CB (2017) The mean and turbulent properties of a wildfire convective plume.
J Appl Meteorol Climatol 56:2289-2299

Larkin NK, DeWinter JL, Strand TM et al (2012) Identification of necessary conditions for Arctic
transport of smoke from U.S. fires (Final report, Project 10-S-02-1). Boise: U.S. Joint fire science
program. http://www.firescience.gov/projects/09-1-04-1/project/09-1. 20 March 2020

Larkin NK, O’Neill SM, Solomon R et al (2009) The BlueSky smoke modeling framework. Int J
Wildland Fire 18:906-920

Larkin NK, Raffuse SM, Strand TM (2014) Wildland fire emissions, carbon, and climate: US
emissions inventories. For Ecol Manage 317:61-69


http://www.firescience.gov/projects/09-1-04-1/project/09-1

116 Y. Liu et al.

Li F, Levis S, Ward DS (2013) Quantifying the role of fire in the earth system—part 1: improved
global fire modeling in the community earth system model (CESM1). Biogeosciences 10:2293—
2314

LiF, Bond-Lamberty B, Levis S (2014) Quantifying the role of fire in the earth system-part 2: impact
on the net carbon balance of global terrestrial ecosystems for the 20th century. Biogeosciences
11:1345-1360

Lim CY, Hagan DH, Coggon MM et al (2019) Secondary organic aerosol formation from the
laboratory oxidation of biomass burning emissions. Atmos Chem Phys 19:12797-12809

Linn RR, Cunningham P (2005) Numerical simulations of grass fires using a coupled atmosphere-
fire model: basic fire behavior and dependence on wind speed. J Geophys Res: Atmos 110:D13107

Liu YQ (2014) A regression model for smoke plume rise of prescribed fires using meteorological
conditions. J Appl Meteorol Climatol 53:1961-1975

Liu YQ, Achtemeier GL, Goodrick SL, Jackson WA (2010) Important parameters for smoke plume
rise simulation with daysmoke. Atmos Pollut Res 1:250-259

Liu YQ, Goodrick S, Achtemeier G et al (2009) Smoke incursions into urban areas: simulation of
a georgia prescribed burn. Int J Wildland Fire 18:336-348

Liu YQ, Goodrick S, Achtemeier G et al (2012) Smoke plume height measurement of prescribed
burns in the southeastern United States. Int J Wildland Fire 22:130-147

Liu YQ, Goodrick S, Heilman W (2014) Wildland fire emissions, carbon, and climate: wildfire-
climate interactions. For Ecol Manage 317:80-96

Liu JC, Wilson A, Mickley LJ et al (2017) Wildfire-specific fine particulate matter and risk of
hospital admissions in urban and rural counties. Epidemiology 28:77-85

Liu X, Zhang Y, Huey LG et al (2016) Agricultural fires in the southeastern U.S. during SEAC 4
RS: emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic
aerosol. J Geophys Res: Atmos 121:7383-7414

Liu YQ (2017) Responses of dead forest fuel moisture to climate change. Ecohydrology 10(2):e1760

Liu YQ (2018) New development and application needs for earth system modeling of fire—climate—
ecosystem interactions. Environ Res Lett 13:011001

Liu YQ, Kochanski A, Baker KR et al (2019) Fire behaviour and smoke modelling: model improve-
ment and measurement needs for next-generation smoke research and forecasting systems. Int J
Wildland Fire 28:570-588

Lyapustin A, Wang Y, Korkin S et al (2019) MAIAC thermal technique for smoke injection height
from MODIS. IEEE Geosci Remote Sens Lett 17:730-734

Long A, Weiss J, Princevac M, Bartolome C (2014) Superfog: state of the science (Southern
Fire Exchange Fact Sheet 2014-2). http://southernfireexchange.org/SFE_Publications/factsh
eets/2014-2.pdf. 20 March 2020

Lu W, Zhong S, Charney JJ et al (2012) WRF simulation over complex terrain during a southern
California wildfire event. ] Geophys Res: Atmos 117:D5

Malavelle FF, Haywood JM, Mercado LM et al (2019) Studying the impact of biomass burning
aerosol radiative and climate effects on the Amazon rainforest productivity with an earth system
model. Atmos Chem Phys 19:1301-1326

Mallia DV, Kochanski AK, Kelly KE et al (2020) Evaluating wildfire smoke transport within a
coupled fire-atmosphere model using a high-density observation network for an episodic smoke
event along Utah’s Wasatch Front. J Geophys Res: Atmos 125(20):e2020JD032712

Mallia DV, Kochanski AK, Urbanski SP, Lin JC (2018) Optimizing smoke and plume rise modeling
approaches at local scales. Atmosphere 9:166

Mandel J, Beezley JD, Kochanski AK (2011) Coupled atmosphere-wildland fire modeling with
WREF 3.3 and SFIRE 2011. Geosci Model Dev 4:591-610

Mandel J, Vejmelka M, Kochanski AK et al (2019) An interactive data-driven HPC system for
forecasting weather, wildland fire, and smoke. 2019 IEEE/ACM HPC for urgent decision making
(UrgentHPC). Piscataway, Institute of Electrical and Electronics Engineers, pp 35-44

Mass CF, Ovens D (2018) The Northern California wildfires of October 8-9, 2017: the role of a
major downslope wind event. Bull Am Meteor Soc 100:235-256


http://southernfireexchange.org/SFE_Publications/factsheets/2014-2.pdf

4 Smoke Plume Dynamics 117

Massman W], Forthofer JM, Finney MA (2017) An improved canopy wind model for predicting
wind adjustment factors and wildland fire behavior. Can J for Res 47:594-603

McCarthy N, McGowan H, Guyot A, Dowdy A (2018) Mobile X-pol radar: a new tool
for investigating pyroconvection and associated wildfire meteorology. Bull Am Meteor Soc
99:1177-1195

Mell W, Jenkins M, Gould J, Cheney P (2007) A physics-based approach to modelling grassland
fires. Int J Wildland Fire 16:1-22

Melnikov VM, Zrnic DS, Rabin RM (2009) Polarimetric radar properties of smoke plumes: a model.
J Geophys Res 114:D21204

Miller C, O’Neill S, Rorig M, Alvarado E (2019) Air-quality challenges of prescribed fire in the
complex terrain and wildland urban interface surrounding Bend, Oregon. Atmosphere 10:515

Mirocha JD, Lundquist J, Kosovic B (2010) Implementation of a nonlinear subfilter turbulence
stress model for large-eddy simulation in the advanced research WRF model. Mon Weather Rev
138:4212-4228

Moon K, Duff TJ, Tolhurst KG (2019) Sub-canopy forest winds: understanding wind profiles for
fire behavior simulation. Fire Saf J 105:320-329

Mueller E, Mell W, Simeoni A (2014) Large eddy simulation of forest canopy flow for wildland
fire modeling. Can J for Res 44:1534-1544

National Wildfire Coordinating Group (NWCG) (2020) Smoke management guide for prescribed
fire (PMS 420-3, NFES 001279). https://www.nwcg.gov/sites/default/files/publications/pms420-
3.pdf. 25 Feb 2021

Navarro KM, Cisneros R, O’Neill SM et al (2016) Air-quality impacts and intake fraction of PM2.5
during the 2013 Rim megafire. Environ Sci Technol 50:11965-11973

Nikonovas T, North PRJ, Doerr SH (2017) Particulate emissions from large North American
wildfires estimated using a new top-down method. Atmos Chem Phys 10:6423-6438

O’Neill SM, Diao MH, Raffuse SM et al (2019) 2017 Northern California wildfires—A NASA health
and air quality applied sciences team (HAQAST) tiger team (AGU fall meeting presentation).
American Geophysical Union, Washington, DC

Ottmar RD (2014) Wildland fire emissions, carbon, and climate: modeling fuel consumption. For
Ecol Manage 317:41-50

Ottmar R, Brown TJ, French NHF, Larkin NK (2017) Fire and smoke model evaluation experiment
(FASMEE). Study plan, Joint fire science program project #15-S-01-01. https://www.fasmee.
net/study-plan. 20 March 2020

Ottmar RD, Hiers JK, Butler BW et al (2016) Measurements, datasets and preliminary results from
the RxCADRE project—2008, 2011 and 2012. Int J Wildland Fire 25:1-9

Paugam R, Wooster W, Freitas S, Val Martin M (2016) A review of approaches to estimate wildfire
plume injection height within large-scale atmospheric chemical transport models. Atmos Chem
Phys 16:907-925

Peterson DL, Hardy CC (2016) The RxCADRE study: a new approach to interdisciplinary fire
research. Int J Wildland Fire 25(1):i

Pouliot G, Pierce T, Benjey W et al (2005) Wildfire emission modeling: integrating BlueSky and
SMOKE. Presentation. In: Proceedings of the 14th international emission inventory conference.
Washington, DC: U.S. Environmental Protection Agency, pp 11-14

Prichard S, Larkin N, Ottmar R et al (2019) The fire and smoke model evaluation experiment—a
plan for integrated, large fire—atmosphere field campaigns. Atmosphere 10:66

Pyroconvective updrafts during a megafire. Geophys Res Lett 47:¢2020GL089001

Raffuse SM, Craig KJ, Larkin NK et al (2012) An evaluation of modeled plume injection height
with satellite-derived observed plume height. Atmosphere 3:103—123

Rio C, Hourdin F, Chédin A (2010) Numerical simulation of tropospheric injection of biomass
burning products by pyro-thermal plumes. Atmos Chem Phys 10:3463-3478

Rodriguez B, Lareau NP, Kingsmill DE, Clements CB (2020) Extreme


https://www.nwcg.gov/sites/default/files/publications/pms420-3.pdf
https://www.fasmee.net/study-plan

118 Y. Liu et al.

Schmidt C (2020) Monitoring fires with the GOES-R series. In: Goodman SJ, Schmit TJ, Daniels
J, Redmon RJ (eds) The GOES-R series: a new generation of geostationary environmentalsSatel-
lites. Elsevier, Amsterdam, pp 145-163

Schmit TJ, Gunshor MM, Menzel WP et al (2005) Introducing the next-generation advanced baseline
imager on GOES-R. Bull Am Meteor Soc 86:1079-1096

Schmit TJ, Griffith P, Gunshor MM et al (2017) A closer look at the ABI on the GOES-R series.
Bull Am Meteor Soc 98:681-698

Schmit TJ, Li J, Li J et al (2008) The GOES-R advanced baseline Imager and the continuation of
current sounder products. J Appl Meteorol Climatol 47:2696-2711

Scire JS, Strimaitis DG, Yamartino RJ (2000) A user’s guide for the CALPUFF dispersion model
(version 5). Earth Tech Inc., Concord

Selimovic V, Yokelson RJ, Warneke C et al (2017) Aerosol optical properties and trace gas emissions
by PAX and OPFTIR for laboratory-simulated western US wildfires during FIREX. Atmos Chem
Phys 18:2929-2948

Seto D, Clements CB (2011) Fire whirl evolution observed during a valley wind-sea breeze reversal.
J Combust 2011:569475

Seto D, Clements CB, Heilman WE (2013) Turbulence spectra measured during fire front passage.
Agric for Meteorol 169:195-210

Seto D, Strand TM, Clements CB et al (2014) Wind and plume thermodynamic structures during
low-intensity subcanopy fires. Agric Meteorol 198-199:53-61

Sharples JJ (2009) An overview of mountain meteorological effects relevant to fire behavior and
bushfire risk. Int J] Wildland Fire 18:737-754

Sofiev M, Ermakova T, Vankevich R (2012) Evaluation of the smoke-injection height from wildland
fires using remote-sensing data. Atmos Chem Phys 12:1995-2006

Sofiev M, Vankevich R, Ermakova T, Hakkarainen J (2013) Global mapping of maximum emission
heights and resulting vertical profiles of wildfire emissions. Atmos Chem Phys 13:7039-7052

Soja A, Fairlie T, Westberg D, Pouliot G (2012) Biomass burning plume injection height using
CALIOP, MODIS and the NASA langley trajectory model. In: Proceedings of the 2012
international emission inventory conference. Washington, DC: U.S. Environmental Protection
Agency

Stein AF, Draxler RR, Rolph GD et al (2015) NOAA’S HYSPLIT atmospheric transport and
dispersion modeling system. Bull Am Meteor Soc 96:2059-2077

Strand T, Larkin N, Rorig M et al (2011) PM2.5 measurements in wildfire smoke plumes from fire
seasons 2005-2008 in the Northwestern United States. J Aerosol Sci 42:143-155

Strand TM, Rorig M, Yedinak K et al (2013) Sub-canopy transport and dispersion of smoke: a
unique observation dataset and model evaluation (Final report. Project 09-1-04-2). Boise: U.S.
joint fire science program. https://www.firescience.gov/projects/09-1-04-2/project/09-1-04-2_f
inal_report.pdf. 20 March 2020

Tang Y, Zhong SY, Luo LF et al (2015) The potential impact of regional climate change on fire
weather in the United States. Ann Am Assoc Geogr 105(1):1-21

Thomas JL, Polashenski CM, Soja AJ et al (2017) Quantifying black carbon deposition over the
greenland ice sheet from forest fires in Canada. Geophys Res Lett 44:7965-7974

Tosca MG, Diner DJ, Garay MJ, Kalashnikova OV (2015) Human-caused fires limit convection in
tropical Africa: first temporal observations and attribution. Geophys Res Lett 42:6492-6501

Unger N, Yue X (2014) Strong chemistry-climate feedbacks in the Pliocene. Geophys Res Lett
41:527-533

Urbanski S, Kovalev VA, Hao WM et al (2010) Lidar and airborne investigation of smoke plume
characteristics: Kootenai creek fire case study. In: Proceedings of 25th international laser radar
conference. St. Petersburg: Publishing House of Russian Academy of Sciences, Siberian Branch,
Institute of Atmospheric Optics, pp 1051-1054

Val Martin M, Logan JA, Kahn RA et al (2010) Smoke injection heights from fires in North America:
analysis of 5 years of satellite observations. Atmos Chem Phys 10:1491-1510


https://www.firescience.gov/projects/09-1-04-2/project/09-1-04-2_final_report.pdf

4 Smoke Plume Dynamics 119

Varner JM, Putz FE, O’Brien JJ et al (2009) Post-fire tree stress and growth following smoldering
duff fires. For Ecol Manage 258:2467-2474

Wang J, Christopher SA, Nair US et al (2006) Mesoscale modeling of central American smoke
transport to the United States: 1. “Top-down’ assessment of emission strength and diurnal variation
impacts. J Geophys Res 111:D05S17

Wang YH, Ke ZM, Zou YF, Liu YQ (2020) Global wildfire plume-rise dataset and parameterizations
for climate model applications. Earth Space Sci Open Archive. https://doi.org/10.1002/essoar.105
03128.1. 29 March 2021

Watts AC (2013) Organic soil combustion in cypress swamps: moisture effects and landscape
implications for carbon release. For Ecol Manage 294C:178-187

Wiedinmyer C, Akagi SK, Yokelson RJ et al (2011) The fire inventory from NCAR (FINN): a
high resolution global model to estimate the emissions from open burning. Geosci Model Dev
4:625-664

Wilkins JL, Foy B, Thompson AM et al (2020) Evaluation of stratospheric intrusions and biomass
burning plumes on the vertical distribution of tropospheric ozone over the midwestern United
States. J Geophys Res: Atmos 125(18):e2020JD32454

Williamson GJ, Bowman DMIJS, Price OF etal (2016) A transdisciplinary approach to understanding
the health effects of wildfire and prescribed fire smoke regimes. Environ Res Lett 11:125009

Winiger P, Andersson A, Eckhardt S et al (2016) The sources of atmospheric black carbon at a
European gateway to the Arctic. Nat Commun 7:12776

Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys
Res Lett 34:1.19803

Wu Y, Nair US, Pielke RA et al (2009) Impact of land surface heterogeneity on mesoscale
atmospheric dispersion. Bound Layer Meteorol 133:367-389

Xue M, Droegemeier KK, Wong V (2000) The advanced regional prediction system (ARPS)—a
multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics
and verification. Meteorol Atmos Phys 75:161-193

Xue M, Droegemeier KK, Wong V et al (2001) The advanced regional prediction system (ARPS)—
a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics
and applications. Meteorol Atmos Phys 76:143-165

Zhao FJ, Liu YQ, Goodrick S et al (2019) The contribution of duff consumption to fire emissions
and air pollution of the rough ridge fire. Int J Wildland Fire 28:993—-1004

Zou 'Y, O’Neill SM, Larkin NK et al (2019a) Machine learning-based integration of high-resolution
wildfire smoke simulations and observations for regional health impact assessment. J Environ
Res Public Health 16:2137

Zou Y, Wang Y, Ke Z et al (2019b) Development of a Region-specific ecosystem feedback fire
(RESFire) model in the community earth system model. ] Advan Model Earth Syst 11:417-445

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://doi.org/10.1002/essoar.10503128.1
http://creativecommons.org/licenses/by/4.0/

Chapter 5 ®)
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Abstract This chapter assesses the current state of the science regarding the compo-
sition, intensity, and drivers of wildland fire emissions in the USA and Canada. Glob-
ally and in the USA wildland fires are a major source of gases and aerosols which
have significant air quality impacts and climate interactions. Wildland fire smoke
can trigger severe pollution episodes with substantial effects on public health. Fire
emissions can degrade air quality at considerable distances downwind, hampering
efforts by air regulators to meet air standards. Fires are a major global source of
aerosols which affect the climate system by absorbing and scattering radiation and
by altering optical properties, coverage, and lifetime of clouds. A thorough under-
standing of fire emissions is essential for effectively addressing societal and climate
consequences of wildland fire smoke.
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5.1 Introduction

Wildland fire smoke contains hundreds of gases (Urbanski 2014; Hatch et al. 2015)
and aerosols diverse in size, composition, and morphology (Reid et al. 2005a, b)
(Box 5.1).! Globally and in the USA wildland fires are a major source of gases
and aerosols (Bond et al. 2013; Werf et al. 2017), and the production, dispersion,
and transformation of fire emissions have significant air quality impacts and climate
interactions. Wildfire smoke can trigger severe, multi-week pollution episodes over
large areas with substantial impacts on public health (Chap. 7). Wildland fires are
a major source of fine particulate matter PM, 5 (particulates with an aerodynamic
diameter <2.5 wm) (Lu et al. 2016; Brey et al. 2018) and can contribute to ozone (O3)
production (McClure and Jaffe 2018), both of which are criteria pollutants regulated
under the U.S. Clean Air Act. Aerosols from fires affect the climate system by
absorbing and scattering radiation (Bond et al. 2013); altering optical properties,
coverage, and lifetime of clouds (Lohmann and Feichter 2005; Koch and Genio
2010); and lowering snow and ice albedo in the Arctic (Hansen and Nazarenko
2004).

Box 5.1 Biomass Burning Aerosol

The terms aerosol, particle, and particulate matter (PM) are used interchange-
ably in atmospheric sciences and in this chapter. Atmospheric aerosols are
liquid and/or solid particles dispersed in air. Aerosols are often described
according to aerodynamic size thresholds:

Aerodynamic diameter (D) (jLm) Nomenclature Term

<0.1 PMy.1 Ultrafine
<1 PM; Submicron
<25 PM> 5 Fine
2.5-10 PM, s—PMjg Coarse
<10 PMio

The particle count and mass in fresh smoke from wildland fires is predomi-
nantly PM; (Reid etal. 2005b, Sect. 5.2.2.1). For context, a typical cloud droplet
has a diameter of ~20 wm, the width of human hair is ~50 pm (see Fig. 7.1),
and the diameter of a typical raindrop is ~2000 pm. PM; 5 and PM( are among
the six criteria pollutants for which the USEPA has set National Ambient Air
Quality Standards under the federal Clean Air Act. The relationship between
particle size and health impacts is discussed in Chap. 7.

1 The terms aerosol, particle, and particulate matter (PM) are used interchangeably in atmospheric
sciences and in this chapter.
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In addition to size, aerosols are also classified according to composition:
organic (OA), non-refractory (non-light absorbing and non-volatilizing), inor-
ganic (sulfate, S0,42~; nitrate, NO;~; ammonium, NH,*; and chloride, C17),
black carbon (BC), and many other trace elements (e.g., K, Ca, Mg). The terms
BC, rBC (refractory BC), elemental carbon, and soot are often used inter-
changeably to refer to light-absorbing carbonaceous particles with a graphitic-
like structure (Buseck et al. 2014; Lack et al. 2014). OA is a mixture of thou-
sands of chemical species (Gilardoni 2017), many of which absorb light pref-
erentially in the UV wavelength range and are labeled as “brown carbon.” The
carbon fraction of OA is referred to as organic carbon (OC). OA dominates
the composition of particles in fresh smoke, comprising >60% of PM; mass
as seen below:

Prescribed Fire PM Speciation

= BC OA = Other
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Based on data from May et al. (2014)

Understanding emissions—the composition and intensity of smoke—is vital for
addressing the wide spectrum of decision support needs initiated by wildland fire
smoke. Accurately characterizing the dependence of emissions on fuels, fire behavior,
and environmental conditions is a key to improving basic smoke management prac-
tices and facilitating use of prescribed fire. Emissions are essential input to smoke
forecasting systems relied upon by public health officials, air quality forecasters,
and fire management teams to mitigate the impacts of wildland fire smoke on public
health and safety. Air regulators need better fire emission estimates to quantify the
contribution of wildland fires to air pollution and thereby inform decision making
about control and regulation of anthropogenic air pollution sources. Robust emission
estimates are also needed to quantify the contribution of fires to urban air pollution,
assess human smoke exposure, and elucidate the role of smoke in climate forcing.
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This chapter assesses the current state of the science on emissions from wild-
land fires in the USA and Canada. The chapter opens with a summary of current
knowledge regarding the composition, intensity, and drivers of emissions. Next, we
review emission datasets and tools available for smoke forecasting, regulatory activ-
ities, smoke management, and research. The chapter concludes with a discussion of
critical gaps in our understanding of emissions.

5.2 Current State of the Science

5.2.1 Fuel Properties, Combustion Processes, and Emissions

The relative abundance of pollutants in fresh smoke (smoke which has not expe-
rienced significant photochemical processing, generally less than ~30 min old; see
Akagi et al. 2011) is quantified with emission factors (EFs). EFs are determined by
measuring the concentration of gases and aerosols in fresh smoke and in the ambient
air outside the smoke plume. For a chemical species X, the concentration difference
between the fresh smoke plume and background air defines the excess mixing ratio,
AX = Xplume — Xbackground- The EF for species X (EFX), the mass of X emitted per
mass of dry biomass consumed, can be calculated from AX using the carbon mass
balance method, a common implementation of which is shown in Egs. 5.1 and 5.2
(Box 5.2). The carbon mass balance method assumes all biomass carbon is volatilized
as gases and aerosol is measured as excess mixing ratios and included in the sum
of Eq. 5.2. In practice, many of the carbonaceous gases produced in combustion are
not measured. However, because >90% of the carbon emitted is contained in carbon
dioxide (CO;), carbon monoxide (CO), and methane (CHy), inclusion of only these
gases in Eq. 5.2 results in only a slight overestimate of EFs (Yokelson et al. 1999).
Additional assumptions of the carbon mass balance method are uniform mixing of
all smoke components and constant background composition.

Box 5.2 Emission Factor by the Carbon Mass Balance Method

MMy ER
EFX = Fec x 1000 (gkg™") x TX x C—X (5.1)
T

In Eq. 5.1, F. is the mass fraction of carbon in the dry biomass, MMy is the
molar mass of X (g mole™"), 12 is the molar mass of carbon (g mole™'), ERy
is the emission ratio of X to CO,, and C7 is given by Eq. 5.2.

n ACj
Cr = Z,-=1 N; x a0 (5.2)

In Eq. 5.2, n is the number of carbon-containing species measured, N; is
the number of carbon atoms in species j, and AC; is the excess mixing ratio of
species j.
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Principal factors that affect combustion, and hence the composition, of fresh
wildland fire emissions are the structure and arrangement of fuels—size, shape and
packing of fuel particles, and fuel condition—moisture content, growth stage, and
soundness of woody material (Chap. 2). Fuel chemistry is also important. Emissions
of gases and particles containing trace elements such as nitrogen (N), sulfur (S),
and chlorine (Cl) are limited by the amounts of these elements in the fuel. Further,
compounds often present in biomass (e.g., terpenoid compounds) can be released
through distillation prior to the onset of pyrolysis. Ambient conditions, such as wind
and terrain, influence both fire behavior and emissions.

The general relationship among fuel bed properties, combustion processes, and
emissions is depicted in Fig. 5.1. Small fuel particles with high surface-to-volume
ratio, loosely packed fuels, and low moisture content favor flaming combustion
(Chap. 2). Grass, foliage, loosely packed litter, and fine woody debris tend to burn
predominantly by flaming combustion, given moderate to low moisture content.
Smoldering is an important process in the combustion of large-diameter woody
fuels, dominating the burning of duff, organic soil, and peat. The relative amount of
smoldering combustion increases with fuel moisture content.

In wildland fires, the combustion processes—preignition/distillation, flaming,
smoldering, and glowing/char oxidation—occur simultaneously and often in prox-
imity (Yokelson et al. 1996; Ottmar 2001; Chaps. 2 and 3). The chemical composition
of smoke is related to the relative amounts of flaming and smoldering combustion
(Chap. 6). Some species are emitted almost exclusively by flaming or smoldering
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@
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Fig. 5.1 General relationships among fuel bed properties, combustion processes, and emissions.
VOC is volatile organic compound
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combustion. Flaming combustion produces CO;, nitrogen oxides (NO,), hydrogen
chloride (HCI), sulfur dioxide (SO,), nitrous acid (HONO) (Burling et al. 2010), and
black carbon (BC) (McMeeking et al. 2009). CO, CH,4, ammonia (NH3), many non-
methane organic gases (NMOG), and organic aerosol (OA) are associated with smol-
dering combustion (McMeeking et al. 2009; Burling et al. 2010). Several NMOGs
are produced during both flaming and smoldering combustion (Burling et al. 2010).

The fraction of combusted fuel carbon emitted as products other than CO,
increases with the proportion of smoldering combustion. A widely used metric for
characterizing burning conditions is modified combustion efficiency, MCE (MCE =
ACO,/(ACO; + ACO)), an index of the relative amount of flaming and smoldering
combustion (Yokelson et al. 1999). Carbonaceous emissions of greatest consequence
for air quality (NMOGs and OA) are products of incomplete combustion, and their
EFs increase with the proportion of smoldering combustion (Fig. 5.1). The EFs of
many NMOGs are negatively correlated with MCE. EFs measured in the laboratory
for four NMOGs are plotted versus MCE in Fig. 5.2. The strength of the EF-MCE
relationship tends to differ with fuel, being greatest for fine understory forest fuels
(litter, woody debris, grass) and weakest for fuels prone to long-term smoldering and
glowing combustion such as logs and organic soil.
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Fig. 5.2 Emission factors for methanol, formaldehyde, ethene, and furan plotted versus modified
combustion efficiency (MCE). Data from burning of western US coniferous ecosystem fuels during
the FIREX laboratory intensive study (excludes duff and logs) (Selimovic et al. 2018)
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Fig. 5.3 Modified combustion efficiency (MCE) for different fire types. PF = prescribed fire, WF
= wildfire. Grass, shrub, and prescribed forest fire based on Urbanski (2014). Wildfire MCE based
on Liu et al. (2017), O’Shea et al. (2013), Urbanski (2013), Hornbrook et al. (2011), and Simpson
etal. (2011)

The tendency for NMOG and OA EFs to be correlated with MCE provides insight
into how emissions of these species differ across fuel types. MCE is highest for fires
in herbaceous and shrub fuels and lowest for forest fuels (Fig. 5.3). Forest wildfire
MCE:s are lower than those for prescribed forest fires. These observed MCEs indicate
total NMOG and OA emissions, per unit mass of fuel burned, trend as: herb/shrub <
forest prescribed fire < forest wildfire.

5.2.2 Smoke Composition and Emission Factors

The primary emission products of wildland fire are CO, and H,O. However, the minor
components of smoke—aerosols, NMOGs, and inorganic gases—are of primary
concern to atmospheric scientists, public health officials, air regulators, and land
managers. A synthesis by Andreae and Merlet (2001) reported EFs for 92 species.
Between 2006 and 2016, a series of laboratory studies at the U.S. Forest Service
Missoula Fire Sciences Laboratory brought together over 100 researchers from more
than 20 institutions to characterize gaseous and particulate emissions from simulated
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wildland fires (McMeeking et al. 2009; Burling et al. 2010; Koss et al. 2018). During
the same period, several field studies validated laboratory results and developed a
framework for extrapolating laboratory-measured EFs to “real fires” in the natural
environment. As a result, more than 500 gases have been identified in fresh smoke,
and our knowledge regarding the physical characteristics (size and morphology),
chemical composition, and optical properties of aerosols has expanded greatly. This
section reviews the current state of the science regarding the composition of wildland
fire emissions based on recent advances from these laboratory and field studies.

5.2.2.1 Aerosol Emissions

Aerosols are classified by their physical characteristics (size and morphology), chem-
ical composition (inorganic, black carbon, organic species, degree of oxidation, etc.),
and/or optical properties (Box 5.1). Of most interest for measuring and modeling
impacts of aerosol from smoke are the primary emissions of particles—primarily
OA and lesser amounts of BC and inorganic species. In addition, it is important to
identify the numerous volatile and semi-volatile organic compounds (SVOCs) that
can exist in both the gas phase and particle phase. These SVOC compounds can
contribute to secondary organic aerosol (SOA) that is formed by reactions in the
atmosphere. SVOC species can also coat BC, which modifies its optical, physical,
and chemical properties.

Particulate matter (PM) is the pollutant principally responsible for the detrimental
public health impacts and visibility degradation caused by wildland fire smoke
(Chap. 7). Although PM air quality has improved across much of the USA over
the past 30 years due to reduced anthropogenic emissions, it has deteriorated in
regions prone to smoke impacts from wildfires (McClure and Jaffe 2018). There-
fore, characterizing the range of EFs for particulate matter (EFPM) for wildfires is
critical.

PM produced by wildland fires is dominated by OA with a range of volatilities.
In the natural environment, as a fresh smoke plume dilutes and cools, competing
condensation/evaporation processes can alter PM; s mass and hence the measured
EFPM, s (Grieshop et al. 2009). For this reason, extrapolating EFPM, 5 measured in
laboratory studies, where smoke concentrations are typically very high, to real fires
is generally unreliable (May et al., 2014, 2015), so wildfire EFPM, 5 are based on
limited field observations.

Measurements of EFPM for US wildfires are limited; Liu et al. (2017) reported
EFPM; (aerosol with an aerodynamic diameter <1.0 wm) for only three wildfires.
However, Garofalo et al. (2019) reported OA:CO emission ratios (AOA/ACO) for
16 western US wildfires. Since wildland fire-produced PM; is mostly OA (Box 5.1),
this extensive dataset can provide an improved estimate of the average magnitude
and range of wildfire EFPM;.

Using methods described below (Sect. 5.4.2), Garofalo et al. (2019) showed that
AOA/ACO can be combined with EFCO measured for western wildfires in previous
studies to estimate EFOA for a wider range of fires than reported in Liu et al.
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(2017). Based on study average EFCO from Liu et al. (2017) (89 g kg™!, n = 3)
and Urbanski (2013) (135 g kg~!, n = 9), the Garofalo et al. (2019) AOA/ACO
(0.26 g sm~3 ppbv~!, n = 16) indicates an EFOA range of 2640 g kg™

This exercise suggests EFPM; for some wildfires may be up to 50% higher than
that reported by Liu et al. (2017). The choice of which EF to use in a model can
have significant implications for current air quality forecasting and projections of
emissions and air quality impacts associated with an anticipated increase in wildfire
activity in the western USA (Yue et al. 2013; Liu et al. 2016; Ford et al. 2018;
Chap. 1).

Concern has arisen about the health impacts of ultrafine particles (UFPs) or
nanoparticles (aerosol with a diameter <100 nm) (Leonard et al. 2007), which may
react differently in the body than larger particles (Chap. 7). However, it has been
difficult to draw firm conclusions on exposure and health effects of UFPs because of
limited field measurements and problems resolving the effects of PM; s and UFPs in
epidemiologic and experimental studies (Baldauf et al. 2016). Nevertheless, it is clear
wildland fires release large numbers of UFPs, and their concentration differs with
combustion conditions and smoke age. As for other size ranges, UFPs differ with
combustion conditions and smoke age. For example, a laboratory study of burning
chaparral vegetation found the most numerous particles emitted were in the range
of 30-50-nm diameter; the total concentration of particles decreased approximately
100-fold from the flaming to smoldering phase of combustion, while the relative
fraction of very fine particles increased (Hosseini et al. 2010).

BC, commonly known as soot, is non-reactive, insoluble, and strongly light
absorbing. Globally, biomass burning is the largest single source of BC to the
atmosphere (Bond et al. 2013). Terminology for BC is not consistent and generally
depends on measurement techniques: thermal—optical methods measure elemental
carbon (EC) on filter samples; optical measurements derive BC mass from in situ
absorbance and/or scattering data or light attenuation through filter deposit using a
mass conversion factor; and laser-induced incandescence (LII) measures refractory
BC (rBC) from single-particle incandescence (Petzold et al. 2013). Inconsisten-
cies among measurement techniques and terminology have resulted in uncertainties
in EFs, although newer methods (e.g., LII) are beginning to identify relationships
between the different methods (May et al. 2014; Li et al. 2019a, b).

Aerosol from biomass burning consists mainly of OA, which typically makes up
over 90% of the mass. Almost all BC is produced from flaming phases of combustion,
whereas smoldering phases shift emissions toward a greater mass of OA and more
particles overall (Bond et al. 2013; May et al. 2014). Jen et al. (2019) found that EFs
for EC increase with MCE (flaming), and OC decreases with MCE, with both fitting
well to logarithmic functions. Some material is emitted as primary organic aerosol
(POA), especially during smoldering phases; other organic compounds are initially
emitted as gases, which may condense upon cooling as they move away from the
combustion zone. The reverse process also occurs, in which compounds evaporate as
the primary particles are diluted in an expanding smoke plume, as much as 80% of
POA mass may be lost during this phase (May et al. 2013, 2015). These competing
processes will be governed by the temperature and concentration in the plume as
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it is transported away from the fire. Finally, particles can increase in size through
collisions (accumulation mode), growing from a peak count median diameter of
~110 nm at the point of emission to ~250 nm downwind (Janhall et al. 2010). Thus,
the size class distribution of particles in an evolving smoke plume is dynamic over
seconds to hours after combustion.

Organic gases can be oxidized photochemically or by O3 as it ages. Oxidation
of NMOGs generates SOA. Enhancements of SOA production by up to a factor
of two have been observed from burning source materials with different NMOG
emissions. A detailed study of the chemistry of particles emitted from laboratory
burns of forest and shrubland fuels from the western USA found that 20-65% of the
particle emissions (by mass) could be categorized into 12 chemical classes, with the
majority of identifiable species being sugars, organic N compounds, and aliphatic
or oxy-aliphatic species (Jen et al. 2019). The fraction of emissions that could be
classified differed considerably among fuels; decayed logs emitted fewer identifiable
substances (~10% classified) than fresher fuels. EFs were approximately log-linear
with MCE for both total mass and some of the chemical classes, with log(EF) = —a
* MCE + b.

5.2.2.2 Gas Emissions

EFs for the 20 most abundant gases (excluding CO,, CO, and CH,) measured in
laboratory studies burning common US fuels are shown in Fig. 5.4. The largest EFs
for all fuel types are low molecular weight and/or oxygenated species. The NMOGs
with the largest EFs common to all fuel types are formaldehyde (HCHO), ethene
(C,Hy), acetic acid (CH3COOH), and methanol (CH3OH). The majority of gases
emitted are NMOGs with EFs that span >4 orders of magnitude (Yokelson et al.
2013; Koss et al. 2018). The relative magnitude of the NMOGs emitted differs across
fuels. Based on laboratory data, southwestern shrubs (e.g., chaparral and mesquite
[Prosopis spp.]) have the lowest total NMOG emissions (~9 g kg~!), western forest
fuels have the highest (~29 g kg~!), and southeastern pine understory fuels have an
intermediate value (19 g kg™!) (Yokelson et al. 2013; Koss et al. 2018).

The observed NMOGs can be sorted into structural categories: aromatics
(benzene-type compounds), oxygenated aromatics, terpenes, furans, aliphatic hydro-
carbons, oxygenated aliphatic hydrocarbons, and compounds containing nitrogen
or sulfur. Non-aromatic oxygenated compounds and furans comprise the largest
portions of NMOGs (by EF) for western forests, chaparral, and wire grass (Aristida
stricta) (Fig. 5.5). Terpenoids, a highly reactive class of compounds thought to be
important SOA precursors (Chap. 6), are produced and stored in plant resins and can
be released when resinous vegetation is heated (Greenberg et al. 2006; Hatch et al.
2019). Because terpenoid emissions result from distillation rather than combustion,
they depend strongly on vegetation type (Greenberg et al. 2006; Hatch et al. 2019)
and comprise a much larger fraction of western forest fuel emissions compared with
non-forest fuels (Fig. 5.5). Total EFNMOG of forest fuels far exceeds that of the non-
forest fuels. This stems from a combination of burning conditions and fuel properties.
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Fig. 5.4 Emission factors (EFs) for the 20 most abundant gas emissions (excluding CO;, CO, and
CHy) from common US fuel types as reported in laboratory studies (Burling et al. 2010; Gilman
et al. 2015; Koss et al. 2018; Selimovic et al. 2018). Panel: a western conifer forest, b southeastern
forest, ¢ chaparral
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Fig. 5.4 (continued)

The rank in total EFNMOG (western forest > chaparral > wire grass) (Fig. 5.5) is
partly a function of burning condition as represented by the MCE of 0.921, 0.955,
and 0.971 for western forest, chaparral, and wire grass, respectively.

Photochemical processing of NMOG emissions in the atmosphere can lead to O3
and SOA formation (see Chap. 6). Quantifying NMOG reactivity with OH identifies
which emissions may have the greatest potential to form these secondary pollutants.
The variability in OH reactivity of emissions from different fuel types can be consid-
erable due to large differences in the magnitude and relative composition of NMOG
emissions. The OH reactivity of NMOG emissions from western forest fuels (~90 s~
[ppb CO] ™) is nearly three times that of chaparral fuels (~30 s~! (ppb CO)~ '), with
the reactivity of southeastern understory forest fuels having an intermediate value
(Gilman et al. 2015; Koss et al. 2018).

In experiments employing airborne sampling platforms, over 90 gases have been
measured in fresh smoke from montane and boreal wildfires and US prescribed
fires (Box 5.3). However, emissions have been measured using advanced chemical
analysis techniques for relatively few wildfires. There are only three such EF datasets
based on in situ airborne measurements in US and Canadian fires (Simpson et al.
2011; Akagi et al. 2013; Liu et al. 2017). Prescribed fire emissions have been more
thoroughly studied, in part due to relative ease of logistics and the concerns of land
management agencies regarding prescribed burn impacts on air quality.
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et al. (2015) and Koss et al. (2018)
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Box 5.3 Locations of Airborne Smoke Plume Sampling

Four contemporary peer-review studies have reported detailed NMOG anal-
ysis of smoke plumes sampled from airborne platforms: Burling et al. (2011),
Simpson et al. (2011), Akagi et al. (2013), and Liu et al. (2017). The most
frequently sampled fire types are understory prescribed fires in southeastern
forests (n = 13).

t’_ [ ——x

® wildfire Ll T} / ool
O Prescribed fire forest ™ __..y-'-.e-\}f'l it \
A Prescribed fire chaparral \ :(. )

NMOGs for which EFs have been measured in the field comprise 36-58% (by
mass) of total NMOG emissions quantified in laboratory studies (Simpson etal. 2011;
Yokelson et al. 2013; Liu et al. 2017; Koss et al. 2018). EFs for select compounds
measured for prescribed fires in three different fuel types (chaparral, southeastern
forest, and western conifer forest) and western wildfires are plotted versus MCE in
Fig. 5.6. There is high variability within and across fire types for these chemical
species, which are among the most abundant emitted by fires. Large fuel-type differ-
ences in NMOG EFs observed in laboratory studies are less pronounced in field
data, presumably due to the small sample size and large natural variability in fuels
and fire behavior which tend to homogenize the emissions at the point and time of
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Fig. 5.6 Emission factors (EFs) for select compounds versus modified combustion efficiency
(MCE). Data are from airborne measurements of prescribed fires in chaparral [RxCH; Burling et al.
(2011)], southeastern conifer forest [RxSE; Akagi et al. (2013)], western conifer forest [RxMF;
Burling et al. (2011)], and western wildfires [WF; Liu et al. (2017)]. EF for particulate matter data
for prescribed fires is from May et al. (2014). Horizontal and vertical bars are one standard deviation

measurement (Fig. 5.6). The EFs in Fig. 5.6 tend to group according to MCE which
is consistent with laboratory findings (see Figs. 5.2 and 5.3).

5.2.2.3 Emissions from Residual Smoldering Combustion

Long-term smoldering combustion that is not influenced by fire-related convection
sufficient to loft the smoke above the surface layer is referred to as residual smol-
dering combustion (RSC; Wade and Lunsford 1989). RSC includes glowing combus-
tion, which is strong smoldering that produces high local temperatures (Santoso
et al. 2019) and often does not produce visible smoke. RSC emissions are generated
from logs, stumps, duff, and organic soils which are prone to sustained smoldering
combustion. Following ignition during flame-front passage, these fuel components
can smolder for hours to days (Ottmar 2018). Replicating RSC in the laboratory is
challenging for these fuel components, and limited data are available.

Two field studies of prescribed fires in North Carolina and South Carolina pine
understories augmented airborne measurements with ground-based sampling of RSC
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emissions. These studies found EFs of gases associated with smoldering combustion;
CO, CHy, and many NMOGs were much higher for RSC than those measured from
airborne platforms (Burling et al. 2011; Akagi et al. 2013). Akagi et al. (2013)
measured over 90 NMOGs from airborne and ground-based platforms for three
prescribed fires in South Carolina pine understory. They found EFNMOG for RSC
(34.18 £ 20.40 g kg~') was more than twice that measured in the lofted plume
(14.56 +0.72 gkg~'), with differences between RSC and lofted plume EFs for indi-
vidual NMOGs being highly variable. Emissions of NOx, which result from flaming
combustion, were negligible from RSC (Burling et al. 2011; Akagi et al. 2013).

Organic soils (peat) and duff burn predominantly by smoldering combustion
(Chap. 2), which can persist for days. When wildfires occur in landscapes with
deep organic soil layers, such as in the southeast USA and northern boreal ecosys-
tems, smoke production can continue for weeks after fire spread is contained and
produce vast quantities of pollutants (Ottmar 2018). Limited field measurements of
PM emissions from smoldering organic soil (North Carolina coastal plain) found
EFPM, 5 > 40 g kg~! (Geron and Hays 2013). This is more than twice the EFPM, 5
observed for the burning of southeastern understory forest fuels with ground-based
measurements (Geron and Hays 2013; Urbanski 2014) and considerably larger than
EFPM| measured from aircraft (May et al. 2014) (Fig. 5.6). In situ measurements of
gaseous emissions from RSC show EFCO = 200-300 g kg~ and EFVOC ~40 gkg ™!
(VOC = NMOG + CHy,4) (Hao and Babbit 2007; Geron and Hays 2013).

Interpretation and application of RSC EFs are challenging due to the uncertain
representativeness and potential sampling biases associated with RSC measurements.
A limited comparison of EFs measured for smoldering fuel components and for
drift smoke along burn-unit perimeters indicates smoldering, and possibly scattered
flaming combustion of other fuel types (e.g., litter and shrubs), may contribute to
unlofted emissions (Akagi et al. 2014). Thus, using only EFs based on RSC-prone
fuel components may not give an accurate depiction of unit-level emissions, fire-
fighter exposure, or local smoke impacts. Given the scarcity of RSC measurements,
extrapolation of data from Geron and Hays (2013) to other ecosystems is needed. In
addition, because comprehensive field measurements of EFs for smoldering organic
soil and peat are even more limited, laboratory-measured EFs must currently be
relied upon to estimate emissions for fires involving these fuel types and associated
combustion characteristics.

5.2.3 Emission Calculations

Quantifying EFs of wildland fires is only the starting point for characterizing emis-
sions. Decision support activities (e.g., forecasting smoke impacts) and research
(e.g., climate forcing of aerosols) require mass flux estimates (kg m~2 s~!) of pollu-
tants released into the atmosphere by wildland fires. Here, we refer to the mass
flux of pollutant X as “emissions of X (Ex) which can be calculated bottom-up
or top-down. Bottom-up calculations are based on surface data (fuel loading and
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burned area), whereas top-down methods calculate emissions using observations of
fire energetics, independent of fuel loading and burned area.

5.2.3.1 Emission Calculations: Bottom-Up Methods
In simplified form, bottom-up emission calculations may be described with Eq. 5.3:
Ex=AxF xCx EFx (5.3)

where the mass flux of species X, Ex (kg-X m~2 s™!) is the product of area burned
(A, m?), fuel loading (F, kg-fuel m~2), combustion completeness (C), and EFy (kg-X
kg-fuel™"). In practice, this calculation involves several components (Ottmar 2018):
(1) fire activity, (2) fuel characteristics, (3) fuel consumption, (4) emission factors,
(5) temporal allocation of emissions, (6) vertical allocation of emissions, and (7) the
atmosphere (Fig. 5.7).

First, fire activity information is necessary—when and where a fire occurred, and
size of the area burned. Availability of fire activity data is constrained by the intended
use of the emissions. Smoke forecasting requires rapid data accessibility for recent
fire activity (e.g., previous 24 h) as well as predictions of fire activity and resultant
emissions for the forecast period (typically 24-48 h). In contrast, research activities
can usually use emissions calculated a long period time after the actual fire activity,
allowing access to post-fire data products.

Fire activity data collected as part of fire management activities are often avail-
able with a timeliness suitable for smoke forecasting. These data include incident
management reports for wildfires and burn permit records and agency reporting for
prescribed fires. This reporting provides fire location and size, and may include size
increase since last report. Prescribed fire data differ widely depending on the agency,
jurisdictional reporting requirements, and land ownership. During large wildfire oper-
ations, fire perimeter data are commonly obtained from airborne mapping, usually
via infrared-based instruments. For both prescribed fire and wildfire, fire size is not
necessarily equivalent to the actual area burned. Meddens et al. (2016) determined
that approximately 20 percent of the area within a wildfire perimeter was unburned.

Satellite detection of active fires (“hotspots”) can provide a large-scale (regional to
continental) view of fire activity (Chuvieco et al. 2019a). Satellite fire detection data
in the USA and Canada have variable spatial and temporal resolution. The MODIS
and VIIRS instruments on polar-orbiting satellites provide data with a nadir (surface
point centered directly below the satellite) pixel size of 375 m to 1 km, and a return
time of 12 h per satellite. The latest generation National Oceanic and Atmospheric
Administration’s Geostationary Operational Environmental Satellites (GOES-16 and
GOES-17) provide fire detection data with a frequency of 5-15 min and nadir pixel
resolution of 2 km. Although widely used, these data have limitations. Clouds, forest
canopy cover, and low fire intensity can inhibit satellite fire detection. The data do
not provide actual fire size, since detectability depends on many factors including
fire intensity (Schroeder et al. 2014; Szpakowski and Jensen 2019).



138 S. P. Urbanski et al.

Satellites

Atmosphere

*

Temporal Allocation Vertical Allocation
of Emissions of Emissions

Emission Factors

»

Fuel Consumption

=

Fuel Characteristics

=
t
S T S

=

A
i
L

Fire Activity and Burned Area
O
/|\
]
LN

Fig. 5.7 Components in calculating emissions from wildland fire
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Emission calculations used in retrospective analyses can leverage fire activity data
not available for real-time smoke forecasting. For example, burned area products
derived from satellite time series of MODIS and LANDSAT observations (Chuvieco
et al. 2019a, b) provide robust burned area mapping. The relaxed time requirements
of retrospective analyses also enable use of detailed, vetted databases constructed
from multi-agency fire reports such as the Fire Occurrence Database (Short et al.
2020). Combining disparate data sources on fire activity in a consistent dataset opti-
mized for emission calculations is challenging. Tools and efforts described in the
Comprehensive Fire Information Reconciled Emissions (CFIRE) Inventory (Larkin
et al. 2020) addressed these issues in an attempt to develop a cohesive dataset of fire
activity information for a region and time period.

Once afire is located and its size is estimated, vegetation information is required to
infer fuel loading data. Vegetation types, such as Douglas fir (Pseudotsuga menziesii)
forest or sagebrush (Artemisia spp.) shrubland, can be obtained from national-scale
mapped datasets such the Fuel Characteristic Classification System (FCCS; Prichard
etal.2013) or on a site-specific basis (Wright et al. 2010b). Fuel classification systems
associate vegetation types with an estimate of fuel loading by stratum (duff, litter,
woody fuels, etc.). These datasets typically represent the mean for vegetation types
whose fuel loading may in reality vary greatly. The high variability of fuel loading
is one of the largest contributors of uncertainty in wildland fire emission estimates
(Larkin et al. 2014; Chap. 2).

Once burned area and fuel loading are obtained, information on the fraction of fuel
consumed across the different fuel strata (combustion completeness) is needed. Fuel
consumption (Chaps. 2 and 3) is determined by the combustion process, consisting
of four phases: (1) preignition involving distillation and pyrolysis, leading to (2)
flaming, (3) smoldering, and (4) glowing (char oxidation) combustion. Fuel proper-
ties (type, moisture content, and arrangement), environmental conditions (e.g., wind
speed and terrain), and ignition method in the case of prescribed fires can affect
the amount of biomass consumed during various combustion stages. CONSUME
(Prichard et al. 2014), FOFEM (Lutes 2019), and Pile Calculator (Wright et al.
2010a) are three widely used fuel consumption models.

The composition and relative abundance of emission species produced during
fuel consumption are a function of fuel type, combustion process, and atmospheric
interactions. The role of these complex processes in determining EFs is discussed in
Sect. 5.2.2.

Finally, emissions must be allocated temporally and vertically in the atmosphere.
For prescribed fires, temporal allocation of emissions is often conducted using the
Fire Emissions Production Simulator (FEPS; Anderson et al. 2004), where soon after
ignition, a large spike in flaming emission occurs which then decays exponentially
until 6 pm local time, at which time all flaming emissions end and smoldering emis-
sions continue through the evening (Ferguson and Hardy 1994). For wildfires, time
profiles based on diurnal cycles derived from a fusion of fire activity observations
from geostationary and polar-orbiting satellites (Mu et al. 2011, Li et al. 2019a, b) or
from the work of the Western Region Air Partnership (WRAP) are typically applied.
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Future work with fire detection data from the GOES-16 and GOES-17 satellites is
anticipated to improve temporal profiles for large wildfires.

The vertical distribution of emissions in the atmosphere depends on smoke plume
dynamics (Chap. 4). Heat released from the fire is estimated from the consumption
model and is often used to estimate the maximum height in the atmosphere under
which emissions are distributed, known as plume rise. A Briggs (1976) approach
has been historically used in systems such as BlueSky (Larkin et al. 2009). Other
plume modeling methods have been used for emissions and smoke modeling (e.g.,
DAYSMOKE; Achtemeier et al. 2011; Chap. 4).

Concurrent with plume rise is how emissions are distributed underneath the plume
top. Typically, smoldering emissions are allocated to the lowest level of the atmo-
spheric model (near the surface). Flaming emissions are usually distributed evenly
(vertically) through the atmosphere beneath the nominal plume-rise height. How
plume-rise height interacts with mixing height, as well as quantity of flaming versus
smoldering emissions, has implications for the quantity of emissions retained near
the surface versus lofted and transported long distances.

5.2.3.2 Emission Calculations: Top-Down Methods

Bottom-up emission approaches combine fuel loading maps with estimates of area
burned and fuel consumption to derive biomass burned, to which EFs are applied
to calculate pollutant emissions (Fig. 5.7; Eq. 5.3). Fuel consumption, the product
of fuel loading and combustion completeness, is the largest source of uncertainty in
bottom-up emission calculations (French et al. 2011; Urbanski et al. 2011; Leeuwen
et al. 2014). Top-down emission methods use satellite observations of fire radiative
power (FRP), a measure of the radiant energy release rate from burning vegetation, to
estimate fuel consumption, circumventing the need to explicitly consider fuel loading
and combustion completeness.

FRP is one of the parameters provided in the active fire products derived from
observations of the MODIS and VIIRS sensors (and other satellite-based sensors)
(Wooster et al. 2003; Zhang et al. 2017). FRP is based on the fire pixel temperature
observed in mid-wavelength infrared, typically around 4 pm (3.96 wm for MODIS)
(Wooster et al. 2003). Laboratory and field experiments have shown that (1) FRP
is linearly related to the vegetation combustion rate, and (2) fire radiative energy
(FRE) (time-integrated FRP) is linearly related to the mass of vegetation combusted
(Wooster et al. 2005; Freeborn et al. 2008; Hudak et al. 2016). Most top-down
approaches estimate emissions by combining fuel consumption inferred from FRE
with biome/land cover-specific EFs (Kaiser et al. 2012; Zhang et al. 2012). A vari-
ation of this approach used estimates of atmospheric column PM loading (derived
from MODIS aerosol optical depth) to develop land cover-specific PM emission coef-
ficients (kg-PM MJ~!) for predicting PM emissions directly from FRE (kg MJ~!)
(Ichoku and Ellison 2014).

Top-down emission inventories typically use FRP retrievals from the MODIS
and VIIRS sensors which are on polar-orbiting satellites. In addition to providing
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Table 5.1 Databases, syntheses, and reviews for emission factors (in order of last update)

Emission factor dataset References Availability Last update

Smoke Emissions Prichard et al. (2020) | https://depts.washington.edu/ | 2019

Repository Application nwfire/sera

Andreae biomass burning | Andreae (2019) https://doi.org/10.17617/3.26 | 2019

emission factors

Urbanski Urbanski (2014) https://www.fs.usda.gov/tre | 2014
esearch/pubs/45727

Wildland fire emissions Lincoln et al. (2014) | https://www.fs.usda.gov/rds/ | 2014

factors database archive/catalog/RDS-2014-
0012

Akagi et al. Akagi et al. (2011) http://bai.acom.ucar.edu/ 2011
Data/fire/

USEPA AP-42 USEPA (1996) https://www3.epa.gov/ttn/ 1996
chief/ap42/ch13/index.html

global coverage, these sensors offer a higher spatial resolution (nominal resolution
at nadir of 1 km for MODIS and 750 m/375 m for VIIRS) than sensors on geosta-
tionary orbiting satellites (e.g., GOES-11/13/15) (nominal 4 km at nadir). However,
polar-orbiting satellites offer limited temporal coverage (two observations a day per
satellite) compared with geostationary satellites. For example, the GOES imagers
provide observations every 5—15 min across the contiguous USA.

Since FRP is an instantaneous indicator of heat flux and does not provide infor-
mation on fire evolution, the sparse temporal coverage of polar-orbiting satellites is
a major limitation of the top-down emission approach. Recent efforts to combine
FRP data from polar-orbiting satellites (MODIS/VIIRS) and higher temporal resolu-
tion GOES fire products are promising for providing improved spatiotemporal FRP
coverage (Li et al. 2019a, b). Application of this approach to the new generation
of GOES imagers (GOES-16/17), which have improved spatial resolution (nominal
2 km at nadir for fire products), may be an effective emission inventory method.

5.3 Existing Data, Tools, Models, and Other Technology

5.3.1 Emission Factors

Publicly available EF syntheses and databases are listed in Table 5.1. Andreae (2019)
and Akagi (2011) support global emission modeling and provide EFs for broad fire
types such as “temperate forest” and “peat fires,” as well as other biomass sources
(e.g., biofuel use and trash burning). Urbanski (2014) uses more specific fire clas-
sifications, designed for US and Canadian fires, such as “prescribed fire southeast
conifer forest” and residual smoldering of “stumps and logs.”


https://depts.washington.edu/nwfire/sera
https://doi.org/10.17617/3.26
https://www.fs.usda.gov/treesearch/pubs/45727
https://www.fs.usda.gov/rds/archive/catalog/RDS-2014-0012
http://bai.acom.ucar.edu/Data/fire/
https://www3.epa.gov/ttn/chief/ap42/ch13/index.html
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The Smoke Emission Reference Application (SERA) is an online database that
allows users to explore and summarize an extensive repository of EFs for smoke
management and emission inventory activities (Prichard et al. 2020). The Lincoln
et al. (2014) database compiles EFs from a large body of field and laboratory studies.
The SERA and Lincoln et al. databases do not synthesize data to derive “best esti-
mate” EFs. Chapter 13 of “Compilation of Air Pollutant Emissions Factors” (AP-42)
(USEPA 1996) provides recommended EFs for a limited number of pollutants for
US fire types and was published prior to the advances achieved in the past 15 years
in characterizing emissions of wildland fires.

5.3.2 Emission Inventories

An emission inventory is a compilation of data that lists, by source, the amount
of air pollutants released into the atmosphere in a defined geographic area during
a specific time period. Table 5.2 provides nine wildland fire emission inventories
that cover the contiguous USA (CONUS). The domain and temporal coverage differ
among the inventories. A number of inventories (GFED, FiNN, QFED, GFAS, FEER,
and GBBPx) are global in coverage, and others focus on the USA (WFEIS, MFLEI,
and NEI) (Table 5.2). Although the spatial resolution of the inventories uses different
metrics (500 m to 0.25°), all provide emissions with a 1-day temporal resolution.
Many atmospheric model applications, whether operational forecasts or retrospective
analyses, require hourly emissions. High temporal frequency observations of fire
activity from geostationary satellites have proven useful for deriving hourly emission
profiles from daily estimates (Mu et al. 2011; Li et al. 2018).

Several inventories (FINN, QFED, GFAS, FEER, and GBBPx) calculate emis-
sions in near-real time for use in atmospheric chemistry forecasting. FiINN and QFED
are used in the Whole Atmosphere Community Climate Model (https://www.acom.
ucar.edu/waccm/forecast). GFAS is used in Copernicus Atmosphere Monitoring
Service (https://atmosphere.copernicus.eu/global-forecast-plots), and GBBEPx is an
operational product currently being used by the NGAC v2 aerosol model at the
National Center for Environmental Prediction. GFED, WFEIS, MFLEI, and NEI are
all retrospective inventories that estimate emissions with a time lag of one to three
years. Retrospective inventories have the potential to provide more accurate emission
estimates than their real-time counterparts as they can leverage burned area and burn
severity geospatial data products that are not available in real time (Urbanski et al.
2018).

Different inventories include different pollutant species. For example, FiNN emis-
sions are speciated for three different atmospheric chemistry model mechanisms;
MFLEI provides fuel consumption and emissions of CO,, CO, CHy, and PM; s;
GFED offers fuel consumption according to fire type, with recommended EFs for
over 20 species. Most of the inventories include fuel consumption which can be
used to calculate emissions for any species for which EFs are available; this requires
information or assumptions regarding fire type and vegetation burned.


https://www.acom.ucar.edu/waccm/forecast
https://atmosphere.copernicus.eu/global-forecast-plots
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Table 5.2 Emission inventories

Inventory ‘ Domain ‘ AX ‘ At ‘ Active ‘ Access

Bottom-up emission calculations

Global Fire Global 0.25° 1 day to 1 month | Yes https://www.globalfir

Emissions edata.org/

Database (GFED)

Wildland Fire USA 1 km 1 day No https://wfeis.mtri.org/

Emissions

Information

System (WFEIS)

Fire Inventory from | Global 1 km 1 day Yes https://www?2.acom.

NCAR (FiNN) ucar.edu/modeling/
finn-fire-inventory-
ncar

Missoula Fire Lab | CONUS | 500 m 1 day Yes https://www.fs.usda.

Emission Inventory gov/rds/archive/cat

(MFLEI) alog/RDS-2017-0039

National Emission | USA Variable |1 day Yes https://www.epa.gov/

Inventory (NEI) air-emissions-invent

ories/national-emissi
ons-inventory-nei

Top-down emission calculations

Global Fire Global 0.1° 1 day Yes https://atmosphere.
Assimilation copernicus.eu/global-
System (GFAS) fire-emissions

Quick Fire Global 0.1° 1 day Yes https://www.acom.
Emission Dataset ucar.edu/waccm/reg
v2.4 (QFED) ister.shtml

Fire Energetics and | Global 0.1° 1 day Yes https://feer.gsfc.nasa.
Emissions gov/projects/emissi
Research v1 ons/

(FEER)

Blended Global Global 0.1° 1h Yes https://www.ospo.
Biomass Burning noaa.gov/Products/
Emissions Product land/gbbepx/

(GBBEPx V3)

5.3.2.1 Emission Estimates for CONUS, Canada, and Alaska

A map of annual average PM; s emissions from 2003 to 2018 estimated by GFED
(Werf et al. 2017) is shown in Fig. 5.8. Emission hotspots are concentrated in the
boreal regions and, to a lesser extent, in the western USA and southern British
Columbia. An emission hotspot is also present on the Georgia—Florida border owing
to a series of intense fires in the Okefenokee Swamp region. GFED annual sums
of PM, 5 emissions for CONUS and Alaska/Canada for 2003-2018 are shown in
Fig. 5.9. The GFED-estimated annual PM; 5 emissions for Alaska and Canada exceed


https://www.globalfiredata.org/
https://wfeis.mtri.org/
https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar
https://www.fs.usda.gov/rds/archive/catalog/RDS-2017-0039
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
https://atmosphere.copernicus.eu/global-fire-emissions
https://www.acom.ucar.edu/waccm/register.shtml
https://feer.gsfc.nasa.gov/projects/emissions/
https://www.ospo.noaa.gov/Products/land/gbbepx/
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Fig. 5.8 Annual average PM» 5 emissions for 2003-2018. Based on data from the global fire
emissions database (Werf et al. 2017)

those of CONUS by a factor of 2-20, depending on the year. Interannual variability
in emissions is similar for the two regions, with coefficients of variation near 0.5.
Monthly average GFED PM; s emissions are shown in Fig. 5.10. Across the
northern tier, emissions are concentrated in the summer months (90% between June
and August). CONUS emissions are spread more broadly across the year, with the
peak three months (July—September) accounting for 60% of the annual total. Putting
the magnitude of emissions into context, Fig. 5.11 plots summer emissions (July—
September) for the western 11 CONUS states with PM; s emissions from non-fire
sources as estimated from the EPA 2014 NEI v2. During the heart of the western USA
wildfire season, GFED-estimated PM; 5 emissions regularly exceeded anthropogenic
sources by a factor of 2—4 during severe fire years (2007, 2012, 2017, 2018).
Annual magnitude, seasonality, and spatial distribution of fire emission across
the USA and Canada are summarized in Figs. 5.8, 5.9, 5.10 and 5.11. There is
uncertainty in emission inventories, especially at spatiotemporal scales relevant for
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Fig. 5.9 Annual sums of PM; s emissions for 2003-2018 for Alaska/Canada (top panel) and the
CONUS (bottom panel). From the global fire emissions database

understanding and predicting smoke impacts. PM; s emissions based on four inven-
tories are shown in Fig. 5.12: PM, 5 emissions range from 80 to 230% of the ensemble
mean. Different data and methods—burned area, fuel-type classification maps, fuel
loading and consumption, and EFs—all contribute to this variability.
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Fig. 5.10 Monthly average PM> 5 emissions for 2003-2018 for Alaska/Canada (top panel) and
CONUS (bottom panel). From the global fire emissions database

5.3.3 Emission Models for Land Management

Prescribed fire is used to maintain and restore ecosystem function and health and miti-
gate wildfire risk through reduction of hazardous fuel. Smoke impacts are an impor-
tant consideration for prescribed burning, and effective smoke management strategies
are generally required for successful use of prescribed fire. Emission reduction tech-
niques (ERTs) are central to the basic smoke management practices recommended
by the National Wildfire Coordination Group (Peterson et al. 2018). ERTs take into
consideration area burned, fuel load, fuel produced, amount of fuel consumed, and
combustion efficiency. Smoke emission models designed for land managers and
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Fig. 5.11 Summer (July—September) PM; 5 emissions for the western 11 CONUS states (bars) and
PM; 5 emissions from non-fire sources as estimated from the USEPA 2014 NEI v2 [solid horizontal
line; USEPA (2014)]

prescribed fire practitioners are important tools for implementing ERTs. Smoke emis-
sion models commonly used for planning of prescribed fires in the USA (Table 5.3)
predict emissions based on fuel loading, fuel moisture, and environmental factors.

A number of models are available for managers to use in prescribed fire planning.
The First Order Fire Effects Model (FOFEM) predicts the immediate consequences
of wildland fire, including fuel consumption, smoke production, soil heating, and tree
mortality. CONSUME is a module within BlueSky, WFEIS, and the Fuel and Fire
Tools (FFT) suite that predicts total fuel consumption, emissions, and heat release.
FEPS predicts hourly emissions, heat release, and plume-rise values for wildland
fires; can import consumption and emission data from CONSUME and FOFEM;
and is included in FFT. The software application FFT integrates CONSUME and
FEPS with fuel data from the FCCS and Digital Photo Series (Chap. 2) into a single
user interface (Ottmar 2014). BlueSky Playground (Larkin 2018) provides interactive
access to several models enabled by the BlueSky Framework and allows users to enter
basic fire information to simulate fuel consumption and pollutant emissions, as well
as model plume rise and smoke dispersion.

5.4 Gaps in Data, Understanding, and Tools/Technology

5.4.1 Emission Factors for Wildfires

The paucity of EF measurements for wildfires is a significant gap in our understanding
of emissions. With the exception of prescribed fires in southeastern US forests, most
fire types have received limited field investigation. The small number of wildfires
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Table 5.3 Emission models for land management

Model Availability References

FOFEM https://www.firelab.org/document/fofem-files/ | Lutes (2019)

CONSUME https://www.fs.fed.us/pnw/fera/research/smoke/ | Prichard et al. (2020)
consume

FEPS https://www.fs.fed.us/pnw/fera/feps Anderson et al. (2004)

FFT https://www.fs.fed.us/pnw/fera/fft Ottmar (2014)

BlueSky Playground | https://tools.airfire.org/playground Larkin (2018)

that have been sampled with detailed chemical speciation does not capture the wide
range of fuels and burning conditions that occur across the USA and Canada.

EFs have not been measured from wildfires for most NMOGs known to be present
in fresh smoke (based on laboratory studies). Boreal wildfire EFs for the most reactive
compounds, which include nearly half the NMOG mass reported, are based on a
single fire (Simpson et al. 2011). Similarly, NMOG EFs for western US wildfires
are limited to only three fires and may not capture the range of wildfire emissions
(Liu et al. 2017). Field studies that did not measure EFs for PM and NMOGs report
an MCE range of 0.83-0.95 for 29 western USA and boreal wildfires (Hornbrook
et al. 2011; O’Shea et al. 2013; Urbanski 2013). Because EFs for many species are
correlated with MCE, the actual range of EFNMOG and EFPM for wildfires may
be considerably broader than suggested by Liu et al. and Simpson et al., so applying
these data to wildfires may introduce uncertainty in emission estimates.

5.4.2 Connecting Laboratory Studies with Field Observations

Comprehensive emission estimates across the spectrum of relevant fire activity
require extrapolating laboratory-measured EFs to real fire conditions. EF extrap-
olation methods include (e.g., Selimovic et al. 2018; Sekimoto et al. 2018):

e Regression of EF versus MCE to extrapolate field MCE

e Average EF of laboratory burns according to fuels type

e Coupling of laboratory AX/ACO with field EFCO to derive EFX at field
conditions

e Pyrolysis profiles based on high- and low-temperature regimes.

These methods may also be used to extrapolate field-measured EFs to fires
in different fuel types and burning conditions. A combination of the first three
approaches has been used in developing global and regional EF databases that are
widely used in emission models and inventories (Akagi et al. 2011; Urbanski 2014;
Andreae 2019). However, an extensive evaluation of laboratory-extrapolated EFs
has not been published, perhaps due to lack of field data. In a limited evaluation,
Sekimoto et al. (2018) found that EFs estimated using high- and low-temperature


https://www.firelab.org/document/fofem-files/
https://www.fs.fed.us/pnw/fera/research/smoke/consume
https://www.fs.fed.us/pnw/fera/feps
https://www.fs.fed.us/pnw/fera/fft
https://tools.airfire.org/playground
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pyrolysis profiles analyzed with positive matrix factorization can reproduce NMOG
EFs from previous field and laboratory burns with reasonable fidelity (r > 0.92).
Additional field data, especially for wildfires, are needed to support a comprehensive
evaluation of EF extrapolation methods.

5.4.3 Variability of EFs with Combustion Conditions

Long-term smoldering can result in sustained periods of poor air quality, exacerbation
of health conditions among vulnerable residents, and dangerous road conditions due
to reduced visibility (Chap. 7). Smoldering that persists into nighttime hours when
winds tend to be light and variable, reducing dispersion, can be especially challenging
when the shallow nocturnal boundary layer reduces the volume into which smoke is
emitted. Nighttime subsidence drainage flows can transport smoke long distances,
pooling it in valleys or low-lying areas.

Applying fuel treatments on landscapes with fuels prone to smoldering, while
minimizing local smoke impacts, requires models that provide reliable temporal
profiles of fuel consumption and pollutant emissions. FOFEM and FEPS are widely
used to predict fuel consumption and smoke production (Ottmar 2018). However, the
ability of these models to simulate fuel consumption rates for smoldering combustion
has not been rigorously evaluated. In addition, the models predict temporal emission
profiles using static smoldering-phase EFs.

Consumption and emission rates during long-term smoldering can differ
depending on the fuel component (log, stump, basal accumulation, etc.) and fuel
condition (Ottmar 2018). Likewise, EFs differ with fuel component type and smol-
dering characteristics (Hao and Babbit et al. 2007; Reisen et al. 2018). The absence of
validated models to predict emission rates from long-term smoldering is a significant
obstacle to using prescribed fire.

5.4.4 Validation of Emission Inventories

There are large discrepancies among the various CONUS emission inventories. In
a recent study, CONUS-wide average monthly PM, 5 emissions estimated by seven
inventories, over four years, ranged from 28.2 to 485.6 Gg, with a coefficient of
variation of 109% (Li et al. 2019a, b). Comparisons limited to retrospective emission
inventories find large differences at fairly coarse scales (Larkin et al. 2014; Koplitz
et al. 2018) and increasing variability with decreasing spatiotemporal scale (French
et al. 2011; Urbanski et al. 2011).

Improving our ability to forecast smoke events and understand smoke impacts
within the USA requires developing and applying thorough validation methods for
emission inventories at the fire-event level. Over 10 emission inventories (near-real
time and retrospective) include the CONUS, and several comparisons are found in
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the literature (e.g., Larkin et al. 2014; Koplitz et al. 2018; Urbanski et al. 2018; Li
et al. 2019a, b). However, none of the emission inventories has been methodically
evaluated using independent data at scales relevant for assessing wildfire smoke
impacts on air quality. Validation methods link satellite observations of fire emissions
(e.g., aerosol optical depth, CO, NO,) to fire activity using atmospheric models and
meteorological analyses. Although these methods have been used in both forward
(Ichoku and Ellison 2014; Petrenko et al. 2017) and inverse (Dubovik et al. 2008;
Kopacz et al. 2010) modeling approaches to constrain fire emission inventories at
global to regional scales, they have not rigorously validated emission inventories at
the fire-event scale.

5.4.5 Forecasting Wildfire Emissions

The lack of reliable near-term (24 h) emission forecasts is a key obstacle to improving
forecasts of wildfire smoke impacts on air quality. The main challenge is accurately
predicting the growth of many active fires over the next burning period in a timely
manner that is compatible with regional-to-continental smoke forecasting systems.
Although several fire growth models exist, current operational smoke models use
daily persistence in burned area growth to forecast emissions. Daily persistence
assumes that the area burned by a given fire in the current day will be that fire’s
growth the following day. However, given available fuel and variable topography,
daily weather plays a major role in the growth of wildfires (Chap. 3).

The sensitivity of wildfire growth to weather is evident in retrospective emission
inventories that suggest that the majority of CONUS wildfire emissions occur on a
small fraction of days (~5%) (Urbanski et al. 2018). The daily persistence approach
will often greatly under-predict these high fire growth/high emission days, which
occur during severe fire weather conditions (e.g., Jolly et al. 2019), resulting in
a failure to forecast acute smoke episodes. The use of daily persistence can also
overestimate fire growth over periods following extreme fire weather days, leading
to an overprediction of smoke production. Improving the skill of smoke forecasts
will require developing and implementing new methods for predicting short-term
(24 h) fire growth and emissions. Methods based on forecast meteorological variables
(temperature, relative humidity, wind speed) and fire weather indices have shown
promise for improving upon daily persistence in prediction of short-term fire activity
and smoke emissions (Peterson et al. 2013; Giuseppe et al. 2017).

5.4.6 Measuring and Modeling PM s

u . u . u . .. u .
Inaccurate PM, 5 measurements introduce errors in emission models used for air
quality modeling and introduce uncertainty in the measurements used to validate
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these models. Inaccurate ambient PM, s measurements also may result in public
health guidance that is either overly restrictive or not adequately protective.

Due to the semi-volatile and reactive nature of smoke, PM, 5 concentration ratios
used to calculate EFs can differ depending upon the local conditions at which they are
measured. EFs are measured from fresh emissions before significant SOA formation,
or other reactions have occurred and altered the chemistry of the emissions. However,
at the high concentrations near the fire, the lower-volatility SVOCs will partition to
the particle phase, leading to higher PM, 5 concentrations than under more dilute
conditions (Robinson et al. 2010). These volatility effects may partially explain the
wide scatter observed in EFPM; 5 across studies (Jolleys et al. 2014; May et al. 2014)
and observations that EFPM; 5 can be almost twice as high near the fire compared
to downwind in a dilute plume (Holder et al. 2016).

The volatility distribution is one way to account for SVOC partitioning and is now
being employed in air quality models (Lu et al. 2020). Volatility distributions have
been shown to be relatively independent of fuel type and burning conditions (May
et al. 2013; Hatch et al. 2018) and can explain up to a 40% loss of PM with 100:1
dilution (Hatch et al. 2018). However, volatility measurements have been limited to
laboratory burns, and field measurements are still needed.

Ambient monitoring of smoke also has PM, s measurement challenges. Air
quality information during smoke events is generally derived from Federal Equiva-
lent Method (FEM) monitors that provide hourly measurements. FEMs are validated
against 24-h filter-based Federal Reference Measurements (FRMs) at concentrations
of 3-200 g m~3 to ensure broad comparability to FRM PM, s mass, which is the
basis for much of the PM, 5 health effect research (USEPA 2020). However, FEM
evaluations do not purposefully include smoke-impacted times and do not cover the
full range of PM, 5 concentrations corresponding to the air quality index range.

Research to identify and resolve FEM monitor measurement accuracy for wildfire
smoke is needed. Several FEMs contain measurement artifacts, which may hinder
their use for assessing smoke impacts on air quality. Environmental beta attenuation
monitors (EBAMs, a near-FEM grade instrument) used in temporary monitoring
networks near fires are subject to a high bias at elevated relative humidity, and hourly
EBAM PM,; 5 data at humidity above 40% should be used cautiously (Schweizer et al.
2016). Another FEM (Teledyne T640®) was found to report PM, s concentrations
40-100% higher than another FEM (MetOne 1020 BAM®), but only when the PM; 5
concentrations were elevated (Hassett-Sipple et al. 2020; Landis et al. 2021).

Sensor technologies are increasingly used to monitor wildfire smoke, and work is
needed to identify appropriate corrections for PM; s sensors and methods to ensure
high-quality data during extended smoky episodes. Although some PM, 5 sensor
measurements can report concentrations up to twice as high as nearby FEMs (Mehadi
et al. 2020; Holder et al. 2020; Landis et al. 2021), with correction some sensors have
been found to report PM; 5 with modest error (~20-30%) over a range of conditions
(Holder et al. 2020; Barkjohn et al. 2020) and are now displayed as part of the Sensor
Data Pilot on the AirNow Fire and Smoke Map (https://fire.airnow.gov).


https://fire.airnow.gov
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5.4.7 Emissions of Hazardous Air Pollutants

PM is the major constituent of smoke associated with adverse health effects;
however, numerous other hazardous air pollutants are also emitted from fires,
such as hydrogen cyanide (HCN), polycyclic aromatic hydrocarbons (PAHs), and
other organic compounds (e.g., formaldehyde). The contribution of these gas-phase
compounds to health effects is poorly known. O’Dell et al. (2020) identified formalde-
hyde as the largest gas-phase hazardous air pollutant contributing to cancer risk from
wildfire smoke. They also found that acrolein was the major contributor to acute
and chronic hazards of young wildfire smoke (<1 day old), whereas HCN was the
primary contributor to chronic hazard from aged wildfire smoke. Although O’Dell
et al. (2020) estimated that health impacts from gas-phase hazardous air pollutants
were small compared to PM, exposure to these pollutants may not be reduced by
common actions recommended to reduce smoke exposure (e.g., portable air cleaners
and N95 masks). More research is also needed on the impact of gas-phase hazardous
air pollutants near fires and human health.

Toxic metals have been measured at trace levels in biomass burning PM (Chen
et al. 2007; Alves et al. 2011; Hosseini et al. 2013). As other sources of toxic metal
emissions to the atmosphere have decreased through regulations, fires may now be
a sizable source of toxic metals to the atmosphere, and some compounds may be
the leading source of these emissions to the atmosphere (Reff et al. 2009). Lead is a
particular concern because it is a USEPA criteria air pollutant and regulated through
the National Ambient Air Quality Standards.

When fires occur in the wildland—urban interface, burning vehicles and structures
may emit toxic metals, because the “fuel” in this case may contain high concentra-
tions of these metals (see Sect. 5.4.8). In areas where there has been environmental
contamination (e.g., Superfund sites, firing ranges, areas downwind of point sources),
lead and other toxic metals deposited in the soil and vegetation can be remobilized as
PM, entrained ash, or soil particles (Kristensen and Taylor 2012; Odigie and Flegal
2014; Wu et al. 2017). Radionuclides were remobilized by fires in the Chernobyl
Exclusion Zone (Evangeliou and Eckhardt 2020) but had limited long range trans-
port, likely because most of the radionuclides in the fuel partition to ash (Hao et al.
2018).

The toxic metals in PM from wildland fires may be emitted from both the soil and
combustion of vegetation. The larger PM size fractions (2.5-10 wm) emitted from
fires are enriched in calcium, magnesium, iron, aluminum, and silicon, likely derived
from soil particles entrained in the fire plume (Echalar et al. 1995; Alves et al. 2010,
2011; Popovicheva et al. 2016). Several elements (boron, manganese, zinc, copper)
are micronutrients that play a vital role in vegetative physiological processes, and
some plant species can hyperaccumulate heavy metals (e.g., uptake of lead by the
Brassicaceae family (mustard family)) (Tangahu et al. 2011).

When present, the higher-volatility metals (e.g., zinc, lead, cadmium, mercury)
in vegetation or soils tend to partition to PM; s, whereas the lower-volatility metals
(e.g., cobalt, nickel, chromium, vanadium) tend to partition to ash (Narodoslawsky
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Table 5.4 USEPA hazardous air pollutant metals in wildland fire smoke

Fire type Field/lab |Sb |Cd |As [Cr |Co |Pb |Ni |Hg |Se |References
(g metal per g particle mass)
Western Lab 6.5 |2 23 39 2.5 | Turn et al.
conifer (1997)
Western Field 375 134 1102 | 78.3 Ward and
forest Hardy (1989)
Southeastern | Field 180 29 87 97 | Balachandran
forest et al. (2013)
Southeastern | Field 1.9 1.5 1.2 | Leeetal.
forest (2005)
Southwestern | Field 9.7 19.8 |50 220 |1.2 |22 12 6.5 |16 | Chow et al.
shrub (2004)

and Obernberger 1996). Metal volatility can also be affected by local combustion
conditions, such as an oxidizing atmosphere facilitating formation of low-volatility
metal oxides, and the presence of other compounds like chlorine that can result in
higher-volatility metal chlorides (Linak and Wendt 1993). Other compounds, such
as aluminosilicates, may also act as a sorbent for some metals, causing the metals to
partition to ash (Linak and Wendt 1993).

There are limited measurements of toxic metal emissions from wildland fires,
owing to the lack of real-time measurement methods and the difficulty of obtaining
sufficient sample mass for analysis. Table 5.4 provides a summary of field and labo-
ratory measurements of EFs of metals on the USEPA hazardous air pollutant list.
The metal contribution to PM mass can vary by one to three orders of magnitude,
possibly representing the variation of the metal content in the vegetation that was
burned. However, the large variation may be caused in part by analytical uncer-
tainties due to limited sample mass. Accurate emissions for these trace hazardous
air pollutants are still needed for many fuel types and regions. Measurements will
require large sample masses and sensitive analytical methods to measure EFs above
the detection limit.

5.4.8 Emissions from Structure Fires

Wildland fires that occur in the wildland—urban interface have the additional compli-
cation of potentially burning different fuels that release toxic emissions when
combusted. Research on toxicity of emissions from combustion of building mate-
rials and vehicles has shown that numerous toxic compounds are emitted, including
hydrogen cyanide, hydrogen fluoride, hydrochloric acid, isocyanates, polycyclic
aromatic hydrocarbons, dioxins, NMOGs (e.g., benzene, toluene, xylene, styrene,
formaldehyde), and metals (Austin et al. 2001; Lonnermark and Blomqvist 2006;
Fabian et al. 2010; Reisen 2011; Stec 2017; Fent et al. 2018). Structural firefighters
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use a self-contained breathing apparatus to exclude pollutant concentrations that are
immediately dangerous to life or health. However, wildland firefighters responding
to wildfires where structures are burned do not normally use self-contained breathing
apparatus and may be exposed to high concentrations of toxic air pollutants (Chap. 7).

Several studies have quantified EFs for hazardous pollutants from building mate-
rials, vehicles, and house fires (Blomqvist et al. 2004; Lonnermark and Blomgqvist
2006; Reisen 2011). The range of pollutants measured, as well as the measurement
methods, differed among these studies, and substantial gaps remain on the emissions
of hazardous air pollutants. In addition, limited information is available on emissions
from materials that contain flame retardants or lithium batteries, or that may have
highly toxic emissions.

Table 5.5 summarizes studies of emissions from combustion of structures and
vehicles, compared with similar measurements from wildland fires. Although EFs for
some of the most hazardous compounds are 2-1600 times greater from combustion
of vehicles or building materials compared to wildland fuels, total emissions depend
on the number and mass of structures or vehicles consumed in the fire. In the 2018
Camp Fire in California, nearly 20,000 structures were consumed, which may have
generated sizable emissions compared to those from natural fuels.

As no inventories of emissions from structures burned in the wildland—urban
interface exist, they are not included in smoke emission models. For example, in the
NEI model, urban areas consumed in wildfires are assigned a default vegetative fuel
loading and EFs that likely underestimate the emissions from burning structures and
vehicles. Therefore, air quality forecasts estimating fire progression into populated
areas may substantially under-predict smoke concentrations.

5.5 Conclusions

Because wildland fires are a major source of gases and aerosols, a thorough under-
standing of fire emissions is essential for addressing societal and climatic conse-
quences of wildland fire smoke. In recent years, a large body of laboratory and field
experiments has led to significant progress in characterizing the composition of fresh
smoke. More than 500 gases have been identified, and our knowledge regarding the
physical characteristics, chemical composition, and optical properties of aerosols
has expanded greatly. Quantifying wildland fire EFs is only the starting point for
characterizing emissions.

Decision support and research require emission inventories of pollutants released
into the atmosphere by wildland fires. Emission inventory methods for both predictive
(e.g., smoke forecasting) and retrospective (e.g., research or air quality regulation)
activities have evolved by leveraging scientific advances in smoke composition, fuels
and fuel consumption, and satellite remote sensing of fire activity and effects. Several
wildland fire emission inventories covering the CONUS are available to support
operational forecasts and retrospective analyses.

Despite recent advances, large gaps in smoke emission science remain:
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e Thereis a significant lack of EF measurements for wildfires; however, results from
recent field studies may soon address this gap in our understanding of emissions.

e Even with expanded field measurements of EFs, comprehensive emission esti-
mates across the spectrum of relevant fire activity will require extrapolating
laboratory-measured EFs to real fire conditions. A thorough evaluation of the
different methods used for extrapolating laboratory EFs is needed to identify best
practices and quantify uncertainties of derived EF.

e EFs and emission rates from residual smoldering combustion have received only
limited research attention. This knowledge shortfall has inhibited the development
of reliable models for predicting local smoke impacts from prescribed fire. Field
studies characterizing emissions from residual smoldering combustion are needed
to provide improved modeling tools to land managers.

e Discrepancies among emission inventories for the CONUS are significant. These
discrepancies are further complicated by the natural heterogeneity of wildland
systems. Comprehensive evaluation of these emission inventories is needed
to quantify their errors and improve their performance across operational and
research applications.

e The lack of reliable near-term (24 h) emission forecasts is an obstacle to improving
forecasts of smoke impacts on air quality. New methods for predicting short-term
fire growth and emissions are needed to improve air quality forecast.

e Toxic metals have been measured in wildland fire PM and may be a large source
of toxic metal emissions. Because toxic metal emissions depend on fuel and soil
characteristics (e.g., metal content by strata) and fire behavior, understanding how
wildland fires may be a source of these hazardous pollutants must be addressed.

e There is a growing need to understand the emmissions from burning structures.
Only limited EFs and no emission inventories are available for evaluating potential
emission impacts of burned structures on the health of wildland firefighters and
nearby communities.
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Smoke Chemistry ez

Matthew J. Alvarado, Kelley C. Barsanti, Serena H. Chung, Daniel A. Jaffe,
and Charles T. Moore

Abstract Smoke chemistry (i.e., chemical transformations taking place within
smoke plumes) can alter the composition and toxicity of smoke on time scales
from minutes to days. Air quality agencies need better information on and better
models of smoke chemistry to more accurately characterize the contributions of
smoke to ambient ozone and particulate matter, and to better predict good windows
for prescribed burning. The ability of these agencies to quantify the contributions of
wildland fires to air pollutants and the ability of forest and burn managers to both
predict and mitigate these impacts are limited by how current models represent smoke
chemistry. This limitation is interconnected with uncertainties in smoke emissions,
plume dynamics, and long-range transport. Improving predictive models will require
a combination of laboratory, field, and modeling studies focused on enhancing our
knowledge of smoke chemistry, including when smoke interacts with anthropogenic
emissions and enters indoors.
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6.1 Introduction

Better understanding and improved model representation of the coupled chemical and
physical transformations occurring in wildland fire smoke plumes will be critical to
improving predictions of the contribution of wildland fires to ozone (O3), particulate
matter <2.5 wm (PM;s), and other air pollutants at local and regional scales. This
includes understanding this chemistry as a function of fuel type (Chap. 2) and burn
characteristics (Chap. 3). Air quality (AQ) agencies need better information and
better models to achieve and maintain compliance with National Ambient Air Quality
Standards (NAAQS) (including exceptional events demonstrations; USEPA 2016)
and to maintain progress toward the visibility goals set for Class I areas in the
Regional Haze Rule. The ability of these AQ agencies to quantify the contributions
of wildland fires to air pollutants and the ability of forest and burn managers to predict
these impacts are limited by the ability of current models to capture the chemical
complexities, which are interconnected to uncertainties in smoke emissions (Chap. 5),
plume dynamics, and long-range transport (Chap. 4). Improving predictive models
will require a combination of laboratory, field, and modeling studies focused on
improving our knowledge of the chemical and physical transformations taking place
within smoke plumes, including when smoke interacts with anthropogenic emissions.

6.1.1 Overview and Context of the Issues

The chemically diverse mixture of pollutants in smoke emitted from wildland fires
is not inert. Complex and interconnected chemical and physical transformations
take place in smoke plumes at time scales from minutes to days (e.g., Hobbs et al.
2003; Baylon et al. 2015), altering the composition of smoke and its effects on human
health and climate. As one example, nitrogen oxides (NOy = NO + NO;) and volatile
organic compounds (VOCs) emitted by fires can lead to in-plume production of O3,
a U.S. Environmental Protection Agency (USEPA) criteria pollutant, on a time scale
of hours (e.g., Jaffe and Wigder 2012). Smoke can also contribute to O3 formation
at much longer temporal and spatial scales, either through (1) near-source formation
of peroxy nitrates (PNs) like peroxyacetyl nitrate (PAN), which can serve as a NOy
reservoir and ultimately a NOy source (e.g., Alvarado et al. 2010) (Fig. 6.1), or (2)
transport of smoke-derived VOCs to NOy-rich urban areas (e.g., Brey and Fischer
2016). Although these general pathways of O3 formation from wildland fire smoke
are well known, the amount of O3 formed in each fire event is highly variable (Jaffe
and Wigder 2012), and the causes of this variability are not well understood or well
represented in current AQ models (Baker et al. 2016).

PM, s emitted by fires also undergoes chemical and physical transformations,
such that the organic component of PM; s (~80-90% of total PM, s mass; Akagi
et al. 2011) becomes more oxidized during plume transport (e.g., Garofalo et al.
2019). Observed increases in the oxidation state of organic PM, s can be driven
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Fig. 6.1 Enhancement ratios of a NOy, b NOy, ¢ PAN, and d O3 and e modified combustion
efficiency (MCE) versus estimated Lagrangian age for a smoke plume from the Lake McKay
wildfire (Saskatchewan, Canada; 56.5° N, 106.8° W) sampled during a 1 July 2008 flight of the
NASA DCS8 during the Arctic Research of the Composition of the Troposphere from Aircraft and
Satellites (ARCTAS-B) field campaign. Blue diamonds are for samples taken during the early
pass (13:00-15:00 LT), red squares and orange triangles are for samples taken during the late pass
(18:20-19:40 LT) above 2 km and below 1 km in altitude, respectively [From Alvarado et al. (2010)]

by physics or chemistry, which also can increase or decrease the total PM; s mass
relative to what was directly emitted. Directly emitted PM; 5 can be rapidly diluted
as a smoke plume disperses, leading to evaporation of the more volatile organic
constituents; this decreases the total PM, 5 mass and can lead to an increase in the
oxidation state of the remaining organic fraction (May et al. 2013).

At the same time, gas-phase organic compounds (including those partitioned from
the particle to the gas phase upon dilution) can be oxidized in plumes. These oxidation
reactions can increase functionalization and the tendency of organic compounds to
condense (i.e., form secondary organic aerosol [SOA]), increase total PM; s mass,
and increase the oxidation state of the organic PM; 5. The extent of SOA formation
can differ greatly between laboratory fires, even among similar fuel types (Tkacik
et al. 2017), and the relative importance of evaporation versus condensation can vary
greatly between smoke plumes (Hodshire et al. 2019a).

The chemical and physical transformations of gases and particles in wildland
fire smoke may also change the overall toxicity of smoke, which may also affect
human health impacts. For example, air toxics within smoke, such as aldehydes (e.g.,
formaldehyde and acrolein) and isocyanic acid (HNCO), can be formed or destroyed
by in-plume chemistry. In addition, recent studies with mice have indicated that the
mutagenicity and toxicity of fresh smoke are a function of the type of fuel burned
and burn conditions (Kim et al. 2018, 2019), suggesting that the health impact of
smoke differs with the chemical composition of the smoke.
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6.1.2 Need for Decision Support

In order to provide better information to the public about ambient AQ and reduce
human health impacts of wildland fire, we need better information on the spatial and
temporal distributions of the primary (directly emitted) and secondary (formed by
chemistry after source emission) pollutants from smoke. Such information can be
used by health studies to further elucidate which chemical compounds and/or chem-
ical properties of smoke cause adverse health outcomes and improve the development
of relevant multi-pollutant air quality indices (AQIs) for smoke.

State and local agencies need better forecasting of pollutant concentrations from
smoke to prepare the appropriate public alerts. Fire and natural resource managers
also need better forecast models to inform prescribed burning decisions. Current
smoke forecast models have uncertainties related to smoke emissions and transport.
In addition, these forecast models either ignore smoke chemistry entirely (Stein
et al. 2009), approximate smoke chemistry with simplified (lumped) mechanisms
developed for anthropogenic air pollution (Baker et al. 2016), and/or have difficulty
handling the changes in the spatial scale of the chemistry as smoke disperses and is
transported over long distances (Alvarado et al. 2010). These current approaches are
insufficient to accurately estimate the effects of wildfires and prescribed burns on O3,
PM, s, and other air toxics, whose formation and loss rates can differ significantly
between smoke plumes. Improved models or statistical approaches are needed to
determine whether a specific fire led to non-compliance with an O3 or PM; 5 stan-
dard (NAAQS) and to accurately model PM, s composition and optical properties to
determine fire contributions to regional haze.

In addition, we need information on how different prescribed burning methods
affect the subsequent chemistry of the smoke. Methods used to start prescribed burns
can have significant effects on the plume dynamics, transport, and emissions. These
changes will also affect smoke chemistry, but there have been no studies about how
ignition methods affect subsequent chemistry in the smoke plume.

6.1.3 Scientific Challenges

6.1.3.1 Ozone Formation in Isolated Plumes

O3 is a secondary pollutant that is formed from the oxidation of VOCs in the presence
of NOy and UV light. Because fires emit NOy and VOCs in variable amounts, O3 may
be formed in a smoke plume at varying concentrations depending on the emissions,
temperature, UV light, and many complex interactions within the plume. Under
warmer conditions, Oz can form fairly rapidly (hours; Akagi et al. 2013) (Fig. 6.2),
whereas in cooler environments, O3 production takes longer and may not be apparent
(Alvarado et al. 2010). An important control on O3z production is the amount of NOx
emitted and then subsequently removed by chemistry (Mauzerall et al. 1998). NOy is
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Fig. 6.2 Ozone enhancement ratios (AO3/ACQO) versus time since emission from Akagi et al.
(2013) (red), Yokelson et al. (2009) (blue), and Akagi et al. (2012) (green) [From Akagi et al.
(2013)]

rapidly sequestered as peroxyacetyl nitrate (PAN) in boreal smoke plumes (Alvarado
etal.2010) (Fig. 6.1). A similar result was found for smoke plumes at the Mt. Bachelor
Observatory in central Oregon at 2.8 km above sea level (Baylon et al. 2015).

In areview of more than 100 different studies, Jaffe and Wigder (2012) found that
O3 is commonly enhanced downwind from fire plumes, and the production increases
with plume age. Tropical and subtropical fires generally produce more O3 and at
a faster rate than temperate and boreal fires, because tropical/subtropical fires emit
more NOy per unit of fuel, and the higher temperatures discourage PAN formation
(Jaffe and Wigder 2012). Nonetheless, PAN is only a temporary reservoir; subse-
quent thermal decomposition will regenerate the original NOy back and distribute
O3 production further downwind (Val Martin et al. 2006). Rapid O3 production is
likely driven by several sources of oxidants, including OH from HONO (nitrous acid)
photolysis. HONO can be either emitted directly (Burling et al. 2011) or produced
from heterogeneous reactions (Ye et al. 2017).

6.1.3.2 Ozone Formation When Smoke Mixes in Urban Areas

When a smoke plume enters an urban area, it will mix with all the existing pollutants
and change the local photochemical environment. Thus, the presence of smoke can
increase urban Oj either by increasing O3 production upwind of the city center or by
increasing O3 production in the urban environment. Optimum O3 production occurs
at a VOC/NOy molar ratio of around 8. Ratios for most urban areas are near this
or lower. Fire emissions typically have high VOC/NOy molar ratios, e.g., ~10-30
(Akagi et al. 2011), so when smoke mixes into an urban area it can facilitate even
more O3 production. Buysse et al. (2019) show that enhanced O3 in urban areas
due to wildland fires is most pronounced at PM; 5 concentrations below 60 g m3.

At higher PM; 5 concentrations, O3 levels appear to be suppressed due to reduced
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photolysis rates, insufficient reaction times, or heterogeneous chemistry on smoke
particles. Photolysis can be complex; there can be multiple scattering influences and
photolysis rates will depend on the location within the plume (Alvarado et al. 2015).
At moderate smoke levels and with high scattering amounts, photolysis may or may
not be significantly reduced inside a smoke plume (Baylon et al. 2018).

Many studies have examined O3 production in smoke plumes by comparing
concentrations in the plume to concentrations outside a plume, defined as the
“enhancement.” Enhancement of a chemically active compound (e.g., O3) can be
ratioed to a relatively inert compound (e.g., CO, or CO) to give an enhancement
ratio that shows the chemical production or loss of the species after accounting for
plume dilution. Lindaas et al. (2017) documented enhancements in O3 associated
with transported smoke plumes of around 15 ppb in Colorado.

Significant impacts on surface O3 via intercontinental transport of wildfire emis-
sions can also occur, such as from Siberian smoke reaching the western USA (Teakles
et al. 2017; Jaffe et al. 2004) or Alaskan smoke reaching the North Atlantic (Real
et al. 2007). Canadian wildfires have been shown to enhance Oj3 in the southeastern
USA (McKeen et al. 2002), Maryland (Dreessen et al. 2016), and New England
(DeBell et al. 2004). Smoke from wildland fires raised the maximum daily 8-h
average (MDAS) O levels by 3—6 ppb on average, with a maximum enhancement
of up to 40 ppb for six cities in the western USA (Gong et al. 2017). During an
especially smoky summer in Boise, Idaho, smoke increased the O; MDAS by an
average of ~15 ppb and significantly increased the number of days over the 70 ppb
MDAS AQ threshold (McClure and Jaffe 2018).

The details of nighttime chemistry are poorly 